908 resultados para FLOW-INJECTION ANALYSIS
Resumo:
The pathogenesis of Alzheimer’s disease (AD) is a critical unsolved question, and while recent studies have demonstrated a strong association between altered brain immune responses and disease progression, the mechanistic cause of neuronal dysfunction and death is unknown. We have previously described the unique CVN-AD mouse model of AD, in which immune-mediated nitric oxide is lowered to mimic human levels, resulting in a mouse model that demonstrates the cardinal features of AD, including amyloid deposition, hyperphosphorylated and aggregated tau, behavioral changes and age-dependent hippocampal neuronal loss. Using this mouse model, we studied longitudinal changes in brain immunity in relation to neuronal loss and, contrary to the predominant view that AD pathology is driven by pro-inflammatory factors, we find that the pathology in CVN-AD mice is driven by local immune suppression. Areas of hippocampal neuronal death are associated with the presence of immunosuppressive CD11c+ microglia and extracellular arginase, resulting in arginine catabolism and reduced levels of total brain arginine. Pharmacologic disruption of the arginine utilization pathway by an inhibitor of arginase and ornithine decarboxylase protected the mice from AD-like pathology and significantly decreased CD11c expression. Our findings strongly implicate local immune-mediated amino acid catabolism as a novel and potentially critical mechanism mediating the age-dependent and regional loss of neurons in humans with AD.
There is a large interest in identifying, lineage tracing, and determining the physiologic roles of monophagocytes in Alzheimer’s disease. While Cx3cr1 knock-in fluorescent reporting and Cre expressing mice have been critical for studying neuroimmunology, mice that are homozygous null or hemizygous for CX3CR1 have perturbed neural development and immune responses. There is, therefore, a need for similar tools in which mice are CX3CR1+/+. Here, we describe a mouse where Cre is driven by the Cx3cr1 promoter on a bacterial artificial chromosome (BAC) transgene (Cx3cr1-CreBT) and the Cx3cr1 locus is unperturbed. Similarly to Cx3cr1-Cre knock-in mice, these mice express Cre in Ly6C-, but not Ly6C+, monocytes and tissue macrophages, including microglia. These mice represent a novel tool that maintains the Cx3cr1 locus while allowing for selective gene targeting in monocytes and tissue macrophages.
The study of immunity in Alzheimer’s requires the ability to identify and quantify specific immune cell subsets by flow cytometry. While it is possible to identify lymphocyte subsets based on cell lineage-specific markers, the lack of such markers in brain myeloid cell subsets has prevented the study of monocytes, macrophages and dendritic cells. By improving on tissue homogenization, we present a comprehensive protocol for flow cytometric analysis, that allows for the identification of several cell types that have not been previously identified by flow cytometry. These cell types include F4/80hi macrophages, which may be meningeal macrophages, IA/IE+ macrophages, which may represent perivascular macrophages, and dendritic cells. The identification of these cell types now allows for their study by flow cytometry in homeostasis and disease.
Resumo:
Natural IgM (nIgM) is constitutively present in the serum, where it aids in the early control of viral and bacterial expansions. nIgM also plays a significant role in the prevention of autoimmune disease by promoting the clearance of cellular debris. However, the cells that maintain high titers of nIgM in the circulation had not yet been identified. Several studies have linked serum nIgM with the presence of fetal-lineage B cells, and others have detected IgM secretion directly by B1a cells in various tissues. Nevertheless, a substantial contribution of undifferentiated B1 cells to nIgM titers is doubtful, as the ability to produce large quantities of antibody (Ab) is a function of the phenotype and morphology of differentiated plasma cells (PCs). No direct evidence exists to support the claim that a B1-cell population directly produces the bulk of circulating nIgM. The source of nIgM thus remained uncertain and unstudied.
In the first part of this study, I identified the primary source of nIgM. Using enzyme-linked immunosorbent spot (ELISPOT) assay, I determined that the majority of IgM Ab-secreting cells (ASCs) in naïve mice reside in the bone marrow (BM). Flow cytometric analysis of BM cells stained for intracellular IgM revealed that nIgM ASCs express IgM and the PC marker CD138 on their surface, but not the B1a cell marker CD5. By spinning these cells onto slides and staining them, following isolation by fluorescence-activated cell sorting (FACS), I found that they exhibit the typical morphological characteristics of terminally differentiated PCs. Transfer experiments demonstrated that BM nIgM PCs arise from a progenitor in the peritoneal cavity (PerC), but not isolated PerC B1a, B1b, or B2 cells. Immunoglobulin (Ig) gene sequence analysis and examination of B1-8i mice, which carry an Ig knockin that prohibits fetal B-cell development, indicated that nIgM PCs differentiate from fetal-lineage B cells. BrdU uptake experiments showed that the nIgM ASC compartment contains a substantial fraction of long-lived plasma cells (LLPCs). Finally, I demonstrated that nIgM PCs occupy a survival niche distinct from that used by IgG PCs.
In the second part of this dissertation, I characterized the unique survival niche of nIgM LLPCs, which maintain constitutive high titers of nIgM in the serum. By using genetically deficient or Ab-depleted mice, I found that neither T cells, type 2 innate lymphoid cells, nor mast cells, the three major hematopoietic producers of IL-5, were required for nIgM PC survival in the BM. However, IgM PCs associate strongly with IL-5-expressing BM stromal cells, which support their survival in vitro when stimulated. In vivo neutralization of IL-5 revealed that, like individual survival factors for IgG PCs, IL-5 is not the sole supporter of IgM PCs, but is likely one of several redundant molecules that together ensure uninterrupted signaling. Thus, the long-lived nIgM PC niche is not composed of hematopoietic sources of IL-5, but a stromal cell microenvironment that provides multiple redundant survival signals.
In the final part of my study, I identified and characterized the precursor of nIgM PCs, which I found in the first project to be resident in the PerC, but not a B1a, B1b, or B2 cell. By transferring PerC cells sorted based on expression of CD19, CD5, and CD11b, I found that only the CD19+CD5+CD11b- population contained cells capable of differentiating into nIgM PCs. Transfer of decreasing numbers of unfractionated PerC cells into Rag1 knockouts revealed an order-of-magnitude drop in the rate of serum IgM reconstitution between stochastically sampled pools of 106 and 3x105 PerC cells, suggesting that the CD19+CD5+CD11b- compartment comprises two cell types, and that interaction between the two necessary for nIgM-PC differentiation. By transferring neonatal liver, I determined that the early hematopoietic environment is required for nIgM PC precursors to develop. Using mice carrying a mutation that disturbs cKit expression, I also found that cKit appears to be required at a critical point near birth for the proper development of nIgM PC precursors.
The collective results of these studies demonstrate that nIgM is the product of BM-resident PCs, which differentiate from a PerC B cell precursor distinct from B1a cells, and survive long-term in a unique survival niche created by stromal cells. My work creates a new paradigm by which to understand nIgM, B1 cell, and PC biology.
Resumo:
Self-assembly of nanoparticles is a promising route to form complex, nanostructured materials with functional properties. Nanoparticle assemblies characterized by a crystallographic alignment of the nanoparticles on the atomic scale, i.e. mesocrystals, are commonly found in nature with outstanding functional and mechanical properties. This thesis aims to investigate and understand the formation mechanisms of mesocrystals formed by self-assembling iron oxide nanocubes. We have used the thermal decomposition method to synthesize monodisperse, oleate-capped iron oxide nanocubes with average edge lengths between 7 nm and 12 nm and studied the evaporation-induced self-assembly in dilute toluene-based nanocube dispersions. The influence of packing constraints on the alignment of the nanocubes in nanofluidic containers has been investigated with small and wide angle X-ray scattering (SAXS and WAXS, respectively). We found that the nanocubes preferentially orient one of their {100} faces with the confining channel wall and display mesocrystalline alignment irrespective of the channel widths. We manipulated the solvent evaporation rate of drop-cast dispersions on fluorosilane-functionalized silica substrates in a custom-designed cell. The growth stages of the assembly process were investigated using light microscopy and quartz crystal microbalance with dissipation monitoring (QCM-D). We found that particle transport phenomena, e.g. the coffee ring effect and Marangoni flow, result in complex-shaped arrays near the three-phase contact line of a drying colloidal drop when the nitrogen flow rate is high. Diffusion-driven nanoparticle assembly into large mesocrystals with a well-defined morphology dominates at much lower nitrogen flow rates. Analysis of the time-resolved video microscopy data was used to quantify the mesocrystal growth and establish a particle diffusion-based, three-dimensional growth model. The dissipation obtained from the QCM-D signal reached its maximum value when the microscopy-observed lateral growth of the mesocrystals ceased, which we address to the fluid-like behavior of the mesocrystals and their weak binding to the substrate. Analysis of electron microscopy images and diffraction patterns showed that the formed arrays display significant nanoparticle ordering, regardless of the distinctive formation process. We followed the two-stage formation mechanism of mesocrystals in levitating colloidal drops with real-time SAXS. Modelling of the SAXS data with the square-well potential together with calculations of van der Waals interactions suggests that the nanocubes initially form disordered clusters, which quickly transform into an ordered phase.
Resumo:
Colorectal cancer (CRC) is the third most common cancer worldwide. Various factors such as age, lifestyle and dietary patterns affect the risk of having CRC. Epidemiological studies showed a chemopreventive effect of soy consumption against CRC. However, which component(s) of soybean is associated with this reduced risk is not yet fully delineated. The objective of this research was to evaluate the anti-colon cancer potential of lunasin isolated from defatted soybean flour using in vitro and in vivo models of CRC. Lunasin was isolated from defatted soybean flour by a combination of different chromatographic and ultrafiltration techniques. The anti-colon cancer potential of lunasin was determined using different human colon cancer cell lines in vitro and a CRC liver metastasis model in vivo. Lunasin caused cytotoxicity to different human colon cancer cells with an IC50 value of 13.0, 21.6, 26.3 and 61.7 µM for KM12L4, RKO, HCT-116 and HT-29 human colon cancer cells, respectively. This cytotoxicity correlated with the expression of the α5 integrin on human colon cancer cells with a correlation coefficient of 0.78. The mechanism involved in the cytotoxic effect of lunasin was through cell cycle arrest and induction of the mitochondrial pathway of apoptosis. In KM12L4 human colon cancer cells, lunasin caused a G2/M phase arrest increasing the percentage of cells at G2/M phase from 12% (PBS-treated) to 24% (treated with 10 µM lunasin). This arrest was attributed to the capability of lunasin to increase the expression of cyclin dependent kinase inhibitors p21 and p27. At 10 µM, lunasin increased the expression of p21 and p27 in KM12L4 colon cancer cells by 2.2- and 2.3-fold, respectively. Flow cytometric analysis showed that lunasin at 10 µM increased the percentage of cells undergoing apoptosis from 13.6% to 24.7%. This is further supported by fluorescence microscopic analysis of KM12L4 cells treated with 10 µM lunasin showing chromatin condensation and DNA fragmentation. The mechanism involved is through modification of proteins involved in the mitochondrial pathway of apoptosis in KM12L4 cells as 10 µM lunasin reduced the expression of the anti-apoptotic Bcl-2 protein by 2-fold and increased the expression of the pro-apoptotic proteins Bax, cytochrome c and nuclear clusterin by 2.2-, 2.1- and 2.3- fold, respectively. This led to increased expression and activity of the executioner of apoptosis, caspase-3 by 1.8- and 2.3-fold, respectively. This pro-apoptotic property of lunasin can be attributed to its capability to internalize into the cytoplasm and nucleus of colon cancer cells 24 h and 72 h after treatment, respectively. In addition, lunasin mediated metastasis of colon cancer cells in vitro by inhibiting the focal adhesion kinase activation thereby reducing expression of extracellular regulated kinase and nuclear factor kappa B and finally inhibiting migration of colon cancer cells. In KM12L4 colon cancer cells, 10 µM lunasin resulted in the reduction of phosphorylation of focal adhesion kinase and extracellular regulated kinase by 2.5-fold, resulting in the reduced nuclear translocation of p50 and p65 NF-κB subunits by 3.8- and 1.4-fold, respectively. In an in vivo model of CRC liver metastasis, daily intraperitoneal administration of lunasin at 4 mg/kg body weight resulted in the inhibition of KM12L4 liver metastasis as shown by the reduction of the number of liver metastases from 28 (PBS-treated) to 14 (lunasin-treated, P = 0.047) and reduction in tumor burden as measured by liver weight/body weight from 0.13 (PBS-treated) to 0.10 (lunasin-treated, P = 0.039). Moreover, lunasin potentiated the anti-metastatic effect of the chemotherapeutic drug oxaliplatin given at 5 mg/kg body weight twice per week. Lunasin and oxaliplatin combination resulted in a more potent inhibition of outgrowth of KM12L4 cell metastases to the liver reducing the number of liver metastases by 6-fold and reducing the tumor burden in the liver by 3-fold when compared to PBS-treated group. This can be attributed by the capability of lunasin and oxaliplatin to reduce expression of proliferating cell nuclear antigen in liver-tumor tissue as measured by immunohistochemical staining. The results of this research for the first time demonstrated the anti-colon cancer potential of lunasin isolated from defatted soybean flour which might contribute to the chemopreventive effect of soybean in CRC as seen in different epidemiological studies. In conclusion, lunasin isolated from defatted soybean flour mediated colon carcinogenesis by inducing apoptosis and preventing outgrowth of metastasis. We suggest that the results of this research serve as a basis for further study on the chemopreventive effect of lunasin against CRC and a possible adjuvant role for lunasin in therapy of patients with metastatic CRC.
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Programa de Pós-Graduação em Geotecnia, 2015.