964 resultados para FLOW MODELS
Resumo:
A flow cytometry-adapted fluorescent antibody to membrane antigen (FAMA) assay to detect IgG antibodies against varicella-zoster virus (VZV) was developed and tested in 62 serum samples, showing 90.32% accuracy obtained from a receiver operating characteristic (ROC) curve with a 0.9125 (95% confidence interval [CI], 0.829 to 1.00) area below the curve compared to the result with standard FAMA.
Resumo:
We assessed a new experimental model of isolated right ventricular (RV) failure, achieved by means of intramyocardial injection of ethanol. RV dysfunction was induced in 13 mongrel dogs via multiple injections of 96% ethanol (total dose 1 mL/kg), all over the inlet and trabecular RV free walls. Hemodynamic and metabolic parameters were evaluated at baseline, after ethanol injection, and on the 14th postoperative day (POD). Echocardiographic parameters were evaluated at baseline, on the sixth POD, and on the 13th POD. The animals were then euthanized for histopathological analysis of the hearts. There was a 15.4% mortality rate. We noticed a decrease in pulmonary blood flow right after RV failure (P = 0.0018), as well as during reoperation on the 14th POD (P = 0.002). The induced RV dysfunction caused an increase in venous lactate levels immediately after ethanol injection and on the 14th POD (P < 0.0003). The echocardiogram revealed a decrease in the RV ejection fraction on the sixth and 13th PODs (P = 0.0001). There was an increased RV end-diastolic volume on the sixth (P = 0.0001) and 13th PODs (P = 0.0084). The right ventricle showed a 74% +/- 0.06% transmural infarction area, with necrotic lesions aged 14 days. Intramyocardial ethanol injection has allowed the creation of a reproducible and inexpensive model of RV failure. The hemodynamic, metabolic, and echocardiographic parameters assessed at different protocol times are compatible with severe RV failure. This model may be useful in understanding the pathophysiology of isolated right-sided heart failure, as well as in the assessment of ventricular assist devices.
Resumo:
Objectives. To examine the effects of betamethasone administration on umbilical artery (UA), middle cerebral artery (MCA) and ductus venosus (DV) Doppler flow. Design. Longitudinal prospective study. Setting: Fetal Surveillance Unit, Department of Obstetrics and Gynecology, University of Sao Paulo, Sao Paulo, Brazil. Population. Thirty-two singleton pregnancies complicated by fetal growth restriction with absent end-diastolic flow in the UA. Methods. Pulsatility index (PI) of the UA, MCA and DV was measured from 26 to 34 weeks prior to and within 24 or 48 hours after starting betamethasone treatment course. Analysis of variance for repeated measures was used to determine the changes in the fetal hemodynamic Doppler flow following maternal corticosteroid administration. Main outcome measures. Improvement of UA-PI within 24 hours and DV-PIV (venous pulsatility) within 48 hours from the first betamethasone dose. Results. Mean gestational age at delivery was 29.3 (1.8) weeks and birthweight was 806.6 (228.2) g. A reduction in the UA-PI was observed in 29 (90.6%) cases, with return of end-diastolic flow in 22 (68.7%). The mean UA-PI were 2.84 (0.52) before corticosteroid administration, 2.07 (0.56) within 24 hours and 2.42 (0.75) after 48 hours, with a significant difference along the evaluations (p0.001). No significant changes in the MCA Doppler were observed. DV-PIV decreased from 1.06 (0.23) prior corticosteroids administration to 0.73 (0.16) within 24 hours and 0.70 (0.19) after 48 hours (p0.001). Conclusions. There was reduction in the umbilical artery and in the DV pulsatility indices within 24 hours from betamethasone administration that was maintained up to 48 hours.
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spc(r)) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.
Resumo:
Excessive free-radical production due to various bacterial components released during bacterial infection has been linked to cell death and tissue injury. Peroxynitrite is a highly reactive oxidant produced by the combination of nitric oxide (NO) and superoxide anion, which has been implicated in cell death and tissue injury in various forms of critical illness. Pharmacological decomposition of peroxynitrite may represent a potential therapeutic approach in diseases associated with the overproduction of NO and superoxide. In the present study, we tested the effect of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Mice were injected i.p. with LPS 40 mg/kg with or without FP15 [Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin] (0.1, 0.3, 1, 3, or 10 mg/kg per hour). Mice were killed 12 h later, followed by the harvesting of samples from the lung, liver, and gut for malondialdehyde and myeloperoxidase measurements. In other subsets of animals, blood samples were obtained by cardiac puncture at 1.5, 4, and 8 h after LPS administration for cytokine (TNF-alpha, IL-1 beta, and IL-10), nitrite/nitrate, alanine aminotransferase, and blood urea nitrogen measurements. Endotoxemic animals showed an increase in survival from 25% to 80% at the FP15 doses of 0.3 and 1 mg/kg per hour. The same dose of FP15 had no effect on plasma levels of nitrite/nitrate. There was a reduction in liver and lung malondialdehyde in the endotoxemic animals pretreated with FP15, as well as in hepatic myeloperoxidase and biochemical markers of liver and kidney damage (alanine aminotransferase and blood urea nitrogen). In a bacterial model of sepsis induced by cecal ligation and puncture, FP15 treatment (0.3 mg/kg per day) significantly protected against mortality. The current data support the view that peroxynitrite is a critical factor mediating liver, gut, and lung injury in endotoxemia and septic shock: its pharmacological neutralization may be of therapeutic benefit.
Resumo:
The adenovirus type 5 (Ad5)-based vaccine developed by Merck failed to either prevent HIV-1 infection or suppress viral load in subsequently infected subjects in the STEP human Phase 2b efficacy trial. Analogous vaccines had previously also failed in the simian immunodeficiency virus (SIV) challenge-rhesus macaque model. In contrast, vaccine protection studies that used challenge with a chimeric simian-human immunodeficiency virus (SHIV89.6P) in macaques did not predict the human trial results. Ad5 vector -based vaccines did not protect macaques from infection after SHIV89.6P challenge but did cause a substantial reduction in viral load and a preservation of CD4(+) T cell counts after infection, findings that were not reproduced in the human trials. Although the SIV challenge model is incompletely validated, we propose that its expanded use can help facilitate the prioritization of candidate HIV-1 vaccines, ensuring that resources are focused on the most promising candidates. Vaccine designers must now develop T cell vaccine strategies that reduce viral load after heterologous challenge.
Resumo:
In this Letter we study the process of gluon fusion into a pair of Higgs bosons in a model with one universal extra dimension. We find that the contributions from the extra top quark Kaluza-Klem excitations lead to a Higgs pair production cross section at the LHC that can be significantly altered compared to the Standard Model value for small values of the compactification scale. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the arterial and venous blood flow in women who underwent upper limb axillary dissection surgery for the treatment of breast cancer. Sixty women were divided into two groups: group 1 (G1)-30 women who underwent breast surgery with axillary dissection level II or III (55.6 +/- A 8.6 years); group 2 (G2)-control, 30 women with no breast cancer (57.4 +/- A 7.0 years). Blood flow profile was evaluated by a continuous wave ultrasound Doppler device (Nicolet Vascular Versalab SE(A (R))) with an 8 MHz probe. Axillary, brachial arteries and veins, arm circumference, volumes, and the ankle-brachial index (ABI) were examined. Wilcoxon test and Mann-Whitney tests were applied to analyze blood flow velocity intra-group and between G1 and G2, respectively. The G1 results showed no lymphedema and no peripheral arterial disease (ABI > 0.9). Moreover, the mean blood flow velocity of the vessels ipsilateral to the surgery was significantly higher than the contralateral ones for all vessels examined (P < 0.05). The mean velocity of blood flow of the vessels contralateral to surgery was significantly higher than the axillary artery in G2 (P < 0.05). It can be concluded that women who underwent axillary dissection due to breast cancer showed probable stenosis in the arterial and venous axillary and brachial vessels of the upper limb ipsilateral to the surgery, confirmed by the increase of blood flow velocity, and such obstruction might affect the limb contralateral to the operation site.
Resumo:
Objectives: Selective anticancer cell activity for both cell-penetrating and cationic antimicrobial peptides has previously been reported. As crotamine possesses activities similar to both of these, this study investigates crotamine`s anticancer toxicity in vitro and in vivo. Research design and methods: In vitro cancer cell viability was evaluated after treatment with 1 and 5 mu g/ml of crotamine. In vivo crotamine cytotoxic effects in C57Bl/6J mice bearing B16-F10 primary cutaneous melanoma were tested, with two groups each containing 35 mice. The crotamine-treated group received 1 mu g/day of crotamine per animal, subcutaneously which was well tolerated; the untreated group received a placebo. Results: Crotamine at 5 mu g/ml was lethal to B16-F10, Mia PaCa-2 and SK-Mel-28 cells and inoffensive to normal cells. In vivo crotamine treatment over 21 days significantly delayed tumor implantation, inhibited tumor growth and prolonged the lifespan of the mice. Mice in the crotamine-treated group survived at significantly higher rates (n = 30/35) than those in the untreated group (n = 7/35) (significance calculated with the Kaplan-Meier estimator). The average tumor weight in the untreated group was 4.60 g but was only about 0.27 g in the crotamine-treated mice, if detectable. Conclusions: These data warrant further exploration of crotamine as a tumor inhibition compound.
Resumo:
Renal ischemia/reperfusion (I/R) injury is one of the frequent causes of acute renal failure (ARF) due to the complex, interrelated sequence of events, that result in damage to and death of kidney cells. Cells of the proximal tubular epithelium are especially susceptible to I/R injury, leading to acute tubular necrosis, which plays a pivotal role in the pathogenesis of ARE Several models have been explicated to assess morphological changes, including those of Jabonski et al. and Goujon et al. We compared the 2 models for histopathological evaluation of 30- or 120-minute periods of renal ischemia followed by 24-hour reperfusion in rats. Several changes were observed after application of the 2 models: proximal tubular cell necrosis, loss of brush border, vacuolization, denudation of tubular basement membrane as a consequence of flattening of basal cells, and presence of intratubular exfoliated cells in the lumen of proximal convoluted tubules at various stages of degeneration (karyorexis, kariopyknosis and karyolysis). Evaluating tubular lesions after 2 periods of experimental ischemia with light microscopy allowed us to conclude that the Goujon classification better characterized the main changes in cortical renal tubules after ischemia.