929 resultados para FISH AND FISH PRODUCTS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we argue that the conventional intra-industry trade (IIT) index does not address the quality issue directly and propose a methodology to make full use of unit-price gap information to deduce quality differences between simultaneously exported and imported products. By applying this measure to German trade data at the eight-digit level, we study the quality improvement of Chinese export goods in its IIT with Germany. We compare the case of China with those of Eastern European countries, which are also major trading partners of Germany. Our results show that the unit-value difference in IIT between Germany and Eastern European countries is clearly narrowing. However, China's export prices to Germany are much lower than Germany's export prices to China, and this gap has not narrowed over the last 23 years. This is at odds with the common perception that China's product quality has improved, as documented by Rodrik (2006) and Schott (2008). Our results support Xu (2010), which argued that incorporating the quality aspect of the exported goods weakens or even eliminates the evidence of the sophistication of Chinese export goods in Rodrik (2006).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Today, it is more and more important to develop competences in the learning process of the university students (that is to say, to acquire knowledge but also skills, abilities, attitudes and values). This is because professional practice requires that the future graduates design and market products, defend the interests of their clients, be introduced in the Administration or, even, in the Politics. Universities must form professionals that become social and opinion leaders, consultants, advisory, entrepreneurs and, in short, people with capacity to solve problems. This paper offers a tool to evaluate the application for the professor of different styles of management in the process of the student’s learning. Its main contribution consists on advancing toward the setting in practice of a model that overcomes the limitations of the traditional practices based on the masterful class, and that it has been applied in Portugal and Spain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Population growth, economic globalization, improving living standards and urbanization are causing important changes in the global food system and modifying the dietary habits in many parts of the world (Molden, 2007; Godfray et al., 2010). The nutritional transition (linked to the development of countries and the increasing wealth of its population) implies a shift away from traditional staple food such as roots and tuber vegetables and a rise in consumption of meat and milk products, refined and processed foods, as well as sugars, oils and fats (Ambler-Edwards et al., 2009). The contemporary food system puts significant pressure on natural resources, especially on land and water, because the growing food demand pushes the agricultural frontier beyond, causing large impacts on ecosystems (Ambler-Edwards et al. 2009: 11-18). Also, the trend towards richer diets in animal proteins and processed food adds further pressure on the environment, since it requires larger amount of water and land to be produced (Allan, 2011; Mekonnen and Hoekstra, 2012).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An objective control method for grading cork stoppers is presented using a cork stopper quality index based on porosity, density and elasticity, these being the properties which have the greatest influence on the closure capacity of the stopper. The elasticity of the cork stopper is measured through the relaxation ratio, which is defined by the relationship between the relaxation force exerted by the cork in the bottleneck and the compressive force exerted by a caliper to fit the stopper in the bottle. The relaxation ratio, defined in this way, represents the part of the compression force which is applied to the stopper on insertion and which is recovered in the form of the relaxation force to achieve closure. The calculation of the relaxation ratio involves the measurement of the relaxation force of the fitted stopper. This force has been measured rigorously and precisely using a device developed in the Cork Laboratory at the INIA-CIFOR and which is presented for the first time in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl–SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR. Isolated lignin of antisense-CAD tobacco contained fewer coniferyl and sinapyl alcohol-derived units that were compensated for by elevated levels of benzaldehydes and cinnamaldehydes. Products from radical coupling of cinnamaldehydes, particularly sinapaldehyde, which were barely discernible in normal tobacco, were major components of the antisense-CAD tobacco lignin. Lignin content was reduced in antisense-CCR tobacco, which displayed a markedly reduced vigor. That lignin contained fewer coniferyl alcohol-derived units and significant levels of tyramine ferulate. Tyramine ferulate is a sink for the anticipated build-up of feruloyl–SCoA, and may be up-regulated in response to a deficit of coniferyl alcohol. Although it is not yet clear whether the modified lignins are true structural components of the cell wall, the findings provide further indications of the metabolic plasticity of plant lignification. An ability to produce lignin from alternative monomers would open new avenues for manipulation of lignin by genetic biotechnologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Combinatorial libraries of synthetic and natural products are an important source of molecular information for the interrogation of biological targets. Methods for the intracellular production of libraries of small, stable molecules would be a valuable addition to existing library technologies by combining the discovery potential inherent in small molecules with the large library sizes that can be realized by intracellular methods. We have explored the use of split inteins (internal proteins) for the intracellular catalysis of peptide backbone cyclization as a method for generating proteins and small peptides that are stabilized against cellular catabolism. The DnaE split intein from Synechocystis sp. PCC6803 was used to cyclize the Escherichia coli enzyme dihydrofolate reductase and to produce the cyclic, eight-amino acid tyrosinase inhibitor pseudostellarin F in bacteria. Cyclic dihydrofolate reductase displayed improved in vitro thermostability, and pseudostellarin F production was readily apparent in vivo through its inhibition of melanin production catalyzed by recombinant Streptomyces antibioticus tyrosinase. The ability to generate and screen for backbone cyclic products in vivo is an important milestone toward the goal of generating intracellular cyclic peptide and protein libraries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The glyoxylate cycle is regarded as essential for postgerminative growth and seedling establishment in oilseed plants. We have identified two allelic Arabidopsis mutants, icl-1 and icl-2, which lack the glyoxylate cycle because of the absence of the key enzyme isocitrate lyase. These mutants demonstrate that the glyoxylate cycle is not essential for germination. Furthermore, photosynthesis can compensate for the absence of the glyoxylate cycle during postgerminative growth, and only when light intensity or day length is decreased does seedling establishment become compromised. The provision of exogenous sugars can overcome this growth deficiency. The icl mutants also demonstrate that the glyoxylate cycle is important for seedling survival and recovery after prolonged dark conditions that approximate growth in nature. Surprisingly, despite their inability to catalyze the net conversion of acetate to carbohydrate, mutant seedlings are able to break down storage lipids. Results suggest that lipids can be used as a source of carbon for respiration in germinating oilseeds and that products of fatty acid catabolism can pass from the peroxisome to the mitochondrion independently of the glyoxylate cycle. However, an additional anaplerotic source of carbon is required for lipid breakdown and seedling establishment. This source can be provided by the glyoxylate cycle or, in its absence, by exogenous sucrose or photosynthesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Telomerase activity is developmentally regulated in mammals. Here we examine telomerase activity in plants, whose development differs in fundamental ways from that of animals. Using a modified version of the telomere repeat amplification protocol (TRAP) assay, we detected an activity in extracts from carrots, cauliflower, soybean, Arabidopsis, and rice with all the characteristics expected for a telomerase synthesizing the plant telomere repeat sequence TTTAGGG. The activity was dependent on RNA and protein components, required dGTP, dATP, and dTTP, but not dCTP, and generated products with a seven nucleotide periodicity. Telomerase activity was abundant in cauliflower meristematic tissue and undifferentiated cells from Arabidopsis, soybean, and carrot suspension cultures, but was low or not detectable in a sampling of differentiated tissues from mature plants. Telomerase from cauliflower meristematic tissues exhibited relaxed DNA sequence requirements, which might reflect the capacity to form telomeres on broken chromosomes in vivo. The dramatic differences in telomerase expression and their correlation with cellular proliferation capacity mirror changes in human telomerase levels during differentiation and immortalization. Hence, telomerase activation appears to be a conserved mechanism involved in conferring long-term proliferation capacity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

According to Khan et al. [Khan, A. U., Kovacic, D., Kolbanovskiy, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], peroxynitrite (ONOO−) decomposes after protonation to singlet oxygen (1ΔgO2) and singlet oxonitrate (nitroxyl, 1NO−) in high yield. They claimed to have observed nitrosyl hemoglobin from the reaction of NO− with methemoglobin; however, contamination with hydrogen peroxide gave rise to ferryl hemoglobin, the spectrum of which was mistakenly assigned to nitrosyl hemoglobin. We have carried out UV–visible and EPR experiments with methemoglobin and hydrogen peroxide-free peroxynitrite and find that no NO− is formed. With this peroxynitrite preparation, no light emission from singlet oxygen at 1270 nm is observed, nor is singlet oxygen chemically trapped; however, singlet oxygen was trapped when hydrogen peroxide was also present, as previously described [Di Mascio, P., Bechara, E. J. H., Medeiros, M. H. G., Briviba, K. & Sies, H. (1994) FEBS Lett. 355, 287–289]. Quantum mechanical and thermodynamic calculations show that formation of the postulated intermediate, a cyclic form of peroxynitrous acid (trioxazetidine), and the products 1NO− and 1ΔgO2 requires Gibbs energies of ca. +415 kJ⋅mol−1 and ca. +180 kJ⋅mol−1, respectively. Our results show that the results of Khan et al. are best explained by interference from contaminating hydrogen peroxide left from the synthesis of peroxynitrite.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The success of Histoplasma capsulatum as an intracellular pathogen depends completely on successful conversion of the saprophytic mycelial (mold) form of this fungus to a parasitic yeast form. It is therefore not surprising that yeast phase-specific genes and gene products are proving to be important for survival and proliferation of H. capsulatum within macrophages. In this study, we have focused on the role and regulation of two yeast-specific characteristics: α-(1,3)-glucan, a cell wall polysaccharide modulated by cell-density (quorum) sensing, and a secreted calcium-binding protein (CBP) that is essential for pathogenicity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tuberous sclerosis (TS) is characterized by the development of hamartomas in various organs and is caused by a germ-line mutation in either TSC1 or TSC2 tumor suppressor genes. From the symptomatic resemblance among TS patients, involvement of TSC1 and TSC2 products in a common pathway has been suggested. Here, to analyze the function of the Tsc1 product, we established a line of Tsc1 (TSC1 homologue) knockout mouse by gene targeting. Heterozygous Tsc1 mutant (Tsc1+/−) mice developed renal and extra-renal tumors such as hepatic hemangiomas. In these tumors, loss of wild-type Tsc1 allele was observed. Homozygous Tsc1 mutants died around embryonic days 10.5–11.5, frequently associated with neural tube unclosure. As a whole, phenotypes of Tsc1 knockout mice resembled those of Tsc2 knockout mice previously reported, suggesting that the presumptive common pathway for Tsc1 and Tsc2 products may also exist in mice. Notably, however, development of renal tumors in Tsc1+/− mice was apparently slower than that in Tsc2+/− mice. The Tsc1 knockout mouse described here will be a useful model to elucidate the function of Tsc1 and Tsc2 products as well as pathogenesis of TS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a conserved family of bacterial gene products that includes the VirB1 virulence factor encoded by tumor-inducing plasmids of Agrobacterium spp., proteins involved in conjugative DNA transfer of broad-host-range bacterial plasmids, and gene products that may be involved in invasion by Shigella spp. and Salmonella enterica. Sequence analysis and structural modeling show that the proteins in this group are related to chicken egg white lysozyme and are likely to adopt a lysozyme-like structural fold. Based on their similarity to lysozyme, we predict that these proteins have glycosidase activity. Iterative data base searches with three conserved sequence motifs from this protein family detect a more distant relationship to bacterial and bacteriophage lytic transglycosylases, and goose egg white lysozyme. Two acidic residues in the VirB1 protein of Agrobacterium tumefaciens form a putative catalytic dyad, Each of these residues was changed into the corresponding amide by site-directed mutagenesis. Strains of A. tumefaciens that express mutated VirB1 proteins have a significantly reduced virulence. We hypothesize that many bacterial proteins involved in export of macromolecules belong to a widespread class of hydrolases and cleave beta-1,4-glycosidic bonds as part of their function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Programmed cell death (apoptosis) is an intrinsic part of organismal development and aging. Here we report that many nonsteroidal antiinflammatory drugs (NSAIDs) cause apoptosis when applied to v-src-transformed chicken embryo fibroblasts (CEFs). Cell death was characterized by morphological changes, the induction of tissue transglutaminase, and autodigestion of DNA. Dexamethasone, a repressor of cyclooxygenase (COX) 2, neither induced apoptosis nor altered the NSAID effect. Prostaglandin E2, the primary eicosanoid made by CEFs, also failed to inhibit apoptosis. Expression of the protooncogene bcl-2 is very low in CEFs and is not altered by NSAID treatment. In contrast, p20, a protein that may protect against apoptosis when fibroblasts enter G0 phase, was strongly repressed. The NSAID concentrations used here transiently inhibit COXs. Nevertheless, COX-1 and COX-2 mRNAs and COX-2 protein were induced. In some cell types, then, chronic NSAID treatment may lead to increased, rather than decreased, COX activity and, thus, exacerbate prostaglandin-mediated inflammatory effects. The COX-2 transcript is a partially spliced and nonfunctional form previously described. Thus, these findings suggest that COXs and their products play key roles in preventing apoptosis in CEFs and perhaps other cell types.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In inflammatory states, nitric oxide (.NO) may be synthesized from precursor L-arginine via inducible .NO synthase (iNOS) in large amounts for prolonged periods of time. When .NO acts as an effector molecule under these conditions, it may be toxic to cells by inhibition of iron-containing enzymes or initiation of DNA single-strand breaks. In contrast to molecular targets of .NO, considerably less is known regarding mechanisms by which cells become resistant to .NO. Metallothionein (MT), the major protein thiol induced in cells exposed to cytokines and bacterial products, is capable of forming iron-dinitrosyl thiolates in vitro. Therefore, we tested the hypothesis that overexpression of MT reduces the sensitivity of NIH 3T3 cells to the .NO donor, S-nitrosoacetylpenicillamine (SNAP), and to .NO released from cells (NIH 3T3-DFG-iNOS) after infection with a retroviral vector expressing human iNOS gene. There was a 4-fold increase in MT in cells transfected with the mouse MT-1 gene (NIH 3T3/MT) compared to cells transfected with the promoter-free inverted gene (NIH 3T3/TM). NIH 3T3/MT cells were more resistant than NIH 3T3/TM cells to the cytotoxic effects of SNAP (0.1-1.0 mM) or .NO released from NIH 3T3-DFG-iNOS cells. A brief (1 h) exposure to 10 mM SNAP caused DNA single-strand breaks that were 9-fold greater in NIH 3T3/TM compared to NIH 3T3/MT cells. Electron paramagnetic resonance spectroscopy of NIH 3T3 cells revealed a greater peak at g = 2.04 (e.g., iron-dinitrosyl complex) in NIH 3T3/MT than NIH 3T3/TM cells. These data are consistent with a role for cytoplasmic MT in interacting with .NO and reducing .NO-induced cyto- and nuclear toxicity.