979 resultados para FIRST-ORDER ABDUCTION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has long been recognized that whistler-mode waves can be trapped in plasmaspheric whistler ducts which guide the waves. For nonguided cases these waves are said to be "nonducted", which is dominant for L < 1.6. Wave-particle interactions are affected by the wave being ducted or nonducted. In the field-aligned ducted case, first-order cyclotron resonance is dominant, whereas nonducted interactions open up a much wider range of energies through equatorial and off-equatorial resonance. There is conflicting information as to whether the most significant particle loss processes are driven by ducted or nonducted waves. In this study we use loss cone observations from the DEMETER and POES low-altitude satellites to focus on electron losses driven by powerful VLF communications transmitters. Both satellites confirm that there are well-defined enhancements in the flux of electrons in the drift loss cone due to ducted transmissions from the powerful transmitter with call sign NWC. Typically, ∼80% of DEMETER nighttime orbits to the east of NWC show electron flux enhancements in the drift loss cone, spanning a L range consistent with first-order cyclotron theory, and inconsistent with nonducted resonances. In contrast, ∼1% or less of nonducted transmissions originate from NPM-generated electron flux enhancements. While the waves originating from these two transmitters have been predicted to lead to similar levels of pitch angle scattering, we find that the enhancements from NPM are at least 50 times smaller than those from NWC. This suggests that lower-latitude, nonducted VLF waves are much less effective in driving radiation belt pitch angle scattering. Copyright 2010 by the American Geophysical Union.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main conclusion of this dissertation is that global H2 production within young ocean crust (<10 Mya) is higher than currently recognized, in part because current estimates of H2 production accompanying the serpentinization of peridotite may be too low (Chapter 2) and in part because a number of abiogenic H2-producing processes have heretofore gone unquantified (Chapter 3). The importance of free H2 to a range of geochemical processes makes the quantitative understanding of H2 production advanced in this dissertation pertinent to an array of open research questions across the geosciences (e.g. the origin and evolution of life and the oxidation of the Earth’s atmosphere and oceans).

The first component of this dissertation (Chapter 2) examines H2 produced within young ocean crust [e.g. near the mid-ocean ridge (MOR)] by serpentinization. In the presence of water, olivine-rich rocks (peridotites) undergo serpentinization (hydration) at temperatures of up to ~500°C but only produce H2 at temperatures up to ~350°C. A simple analytical model is presented that mechanistically ties the process to seafloor spreading and explicitly accounts for the importance of temperature in H2 formation. The model suggests that H2 production increases with the rate of seafloor spreading and the net thickness of serpentinized peridotite (S-P) in a column of lithosphere. The model is applied globally to the MOR using conservative estimates for the net thickness of lithospheric S-P, our least certain model input. Despite the large uncertainties surrounding the amount of serpentinized peridotite within oceanic crust, conservative model parameters suggest a magnitude of H2 production (~1012 moles H2/y) that is larger than the most widely cited previous estimates (~1011 although previous estimates range from 1010-1012 moles H2/y). Certain model relationships are also consistent with what has been established through field studies, for example that the highest H2 fluxes (moles H2/km2 seafloor) are produced near slower-spreading ridges (<20 mm/y). Other modeled relationships are new and represent testable predictions. Principal among these is that about half of the H2 produced globally is produced off-axis beneath faster-spreading seafloor (>20 mm/y), a region where only one measurement of H2 has been made thus far and is ripe for future investigation.

In the second part of this dissertation (Chapter 3), I construct the first budget for free H2 in young ocean crust that quantifies and compares all currently recognized H2 sources and H2 sinks. First global estimates of budget components are proposed in instances where previous estimate(s) could not be located provided that the literature on that specific budget component was not too sparse to do so. Results suggest that the nine known H2 sources, listed in order of quantitative importance, are: Crystallization (6x1012 moles H2/y or 61% of total H2 production), serpentinization (2x1012 moles H2/y or 21%), magmatic degassing (7x1011 moles H2/y or 7%), lava-seawater interaction (5x1011 moles H2/y or 5%), low-temperature alteration of basalt (5x1011 moles H2/y or 5%), high-temperature alteration of basalt (3x1010 moles H2/y or <1%), catalysis (3x108 moles H2/y or <<1%), radiolysis (2x108 moles H2/y or <<1%), and pyrite formation (3x106 moles H2/y or <<1%). Next we consider two well-known H2 sinks, H2 lost to the ocean and H2 occluded within rock minerals, and our analysis suggests that both are of similar size (both are 6x1011 moles H2/y). Budgeting results suggest a large difference between H2 sources (total production = 1x1013 moles H2/y) and H2 sinks (total losses = 1x1011 moles H2/y). Assuming this large difference represents H2 consumed by microbes (total consumption = 9x1011 moles H2/y), we explore rates of primary production by the chemosynthetic, sub-seafloor biosphere. Although the numbers presented require further examination and future modifications, the analysis suggests that the sub-seafloor H2 budget is similar to the sub-seafloor CH4 budget in the sense that globally significant quantities of both of these reduced gases are produced beneath the seafloor but never escape the seafloor due to microbial consumption.

The third and final component of this dissertation (Chapter 4) explores the self-organization of barchan sand dune fields. In nature, barchan dunes typically exist as members of larger dune fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides (“calving”); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the problem of consistent interactions for spin-3 gauge fields in flat spacetime of arbitrary dimension 3$">n>3. Under the sole assumptions of Poincaré and parity invariance, local and perturbative deformation of the free theory, we determine all nontrivial consistent deformations of the abelian gauge algebra and classify the corresponding deformations of the quadratic action, at first order in the deformation parameter. We prove that all such vertices are cubic, contain a total of either three or five derivatives and are uniquely characterized by a rank-three constant tensor (an internal algebra structure constant). The covariant cubic vertex containing three derivatives is the vertex discovered by Berends, Burgers and van Dam, which however leads to inconsistencies at second order in the deformation parameter. In dimensions 4$">n>4 and for a completely antisymmetric structure constant tensor, another covariant cubic vertex exists, which contains five derivatives and passes the consistency test where the previous vertex failed. © SISSA 2006.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of constructing consistent parity-violating interactions for spin-3 gauge fields is considered in Minkowski space. Under the assumptions of locality, Poincaré invariance, and parity noninvariance, we classify all the nontrivial perturbative deformations of the Abelian gauge algebra. In space-time dimensions n=3 and n=5, deformations of the free theory are obtained which make the gauge algebra non-Abelian and give rise to nontrivial cubic vertices in the Lagrangian, at first order in the deformation parameter g. At second order in g, consistency conditions are obtained which the five-dimensional vertex obeys, but which rule out the n=3 candidate. Moreover, in the five-dimensional first-order deformation case, the gauge transformations are modified by a new term which involves the second de Wit-Freedman connection in a simple and suggestive way. © 2006 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical simulations have been used in studies of the temporal and spectral features of supercontinuum generation in photonic crystal and tapered optical fibers. In particular, an ensemble average over multiple simulations performed with random quantum noise on the input pulse allows the coherence of the supercontinuum to be quantified in terms of the dependence of the degree of first-order coherence on the wavelength. The coherence is shown to depend strongly on the input pulse's duration and wavelength, and optimal conditions for the generation of coherent supercontinua are discussed. © 2002 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical simulations have been used to study broad-band supercontinuum generation in optical fibers with dispersion and nonlinearity characteristics typical and photonic crystal or tapered fibers structures. The simulations include optical shock and Raman nonlinearity terms, with quantum noise taken into account phenomenologically by including in the input field a noise seed of one photon per mode with random phase. For input pulses of 150-fs duration injected in the anomalous dispersion regime, the effect of modulational instability is shown to lead to severe temporal jitter in the output, and associated fluctuations in the spectral amplitude and phase across the generated supercontinuum. The spectral phase fluctuations are quantified by performing multiple simulations and calculating both the standard deviation of the phase and, more rigorously, the degree of first-order coherence as a function of wavelength across the spectrum. By performing simulations over a range of input pulse durations and wavelengths, we can identify the conditions under which coherent supercontinua with a well-defined spectral phase are generated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a reified temporal logic for representing and reasoning about temporal and non-temporal relationships between non-temporal assertions. A clear syntax and semantics for the logic is formally provided. Three types of predicates, temporal predicates, non-temporal predicates and meta-predicates, are introduced. Terms of the proposed language are partitioned into three types, temporal terms, non-temporal terms and propositional terms. Reified propositions consist of formulae with each predicate being either a temporal predicate or a meta-predicate. Meta-predicates may take both temporal terms and propositional terms together as arguments or take propositional terms alone. A standard formula of the classical first-order language with each predicate being a non-temporal predicate taking only non-temporal terms as arguments is reified as just a propositional term. A general time ontology has been provided which can be specialized to a variety of existing temporal systems. The new logic allows one to predicate and quantify over propositional terms while according a special status of time; for example, assertions such as ‘effects cannot precede their causes’ is ensured in the logic, and some problematic temporal aspects including the delay time between events and their effects can be conveniently expressed. Applications of the logic are presented including the characterization of the negation of properties and their contextual sentences, and the expression of temporal relations between actions and effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are three main approaches to the representation of temporal information in AI literature: the so-called method of temporal arguments that simply extends functions and predicates of first-order language to include time as the additional argument; modal temporal logics which are extensions ofthe propositional or predicate calculus with modal temporal operators; and reified temporal logics which reify standard propositions of some initial language (e.g., the classical first-order or modal logic) as objects denoting propositional terms. The objective of this paper is to provide an overview onthe temporal reified approach by looking closely atsome representative existing systems featuring reified propositions, including those of Allen, McDermott, Shoham, Reichgelt, Galton, and Ma and Knight. We shall demonstrate that, although reified logics might be more complicated in expressing assertions about some given objects with respect to different times, they accord a special status to time and therefore have several distinct advantages in talking about some important issues which would be difficult (if not impossible) to express in other approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Allylic sulfonyl halides can be generated by halogenolysis of the corresponding triorganotin sulfinates. Allylic sulfonyl bromides and iodides undergo a first order, thermal desulfination with allylic rearrangement to yield the corresponding allylic halides. The desulfination of a cyclic allylic sulfonyl bromide is stereospecific, proceeding with T-syn bromine migration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we clearly demonstrate that changes in oceanic nutrients are a first order factor in determining changes in the primary production of the northwest European continental shelf on time scales of 5–10 yr. We present a series of coupled hydrodynamic ecosystem modelling simulations, using the POLCOMS-ERSEM system. These are forced by both reanalysis data and a single example of a coupled ocean-atmosphere general circulation model (OA-GCM) representative of possible conditions in 2080–2100 under an SRES A1B emissions scenario, along with the corresponding present day control. The OA-GCM forced simulations show a substantial reduction in surface nutrients in the open-ocean regions of the model domain, comparing future and present day time-slices. This arises from a large increase in oceanic stratification. Tracer transport experiments identify a substantial fraction of on-shelf water originates from the open-ocean region to the south of the domain, where this increase is largest, and indeed the on-shelf nutrient and primary production are reduced as this water is transported on-shelf. This relationship is confirmed quantitatively by comparing changes in winter nitrate with total annual nitrate uptake. The reduction in primary production by the reduced nutrient transport is mitigated by on-shelf processes relating to temperature, stratification (length of growing season) and recycling. Regions less exposed to ocean-shelf exchange in this model (Celtic Sea, Irish Sea, English Channel, and Southern North Sea) show a modest increase in primary production (of 5–10%) compared with a decrease of 0–20% in the outer shelf, Central and Northern North Sea. These findings are backed up by a boundary condition perturbation experiment and a simple mixing model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The particulate optical backscattering coefficient (bbp) is a fundamental optical property that allows monitoring of marine suspended particles both in situ and from space. Backscattering measurements in the open ocean are still scarce, however, especially in oligotrophic regions. Consequently, uncertainties remain in bbp parameterizations as well as in satellite estimates of bbp. In an effort to reduce these uncertainties, we present and analyze a dataset collected in surface waters during the 19th Atlantic Meridional Transect. Results show that the relationship between particulate beam-attenuation coefficient (cp) and chlorophyll-a concentration was consistent with published bio-optical models. In contrast, the particulate backscattering per unit of chlorophyll-a and per unit of cp were higher than in previous studies employing the same sampling methodology. These anomalies could be due to a bias smaller than the current uncertainties in bbp. If that was the case, then the AMT19 dataset would confirm that bbp:cp is remarkably constant over the surface open ocean. A second-order decoupling between bbp and cp was, however, evident in the spectral slopes of these coefficients, as well as during diel cycles. Overall, these results emphasize the current difficulties in obtaining accurate bbp measurements in the oligotrophic ocean and suggest that, to first order, bbp and cp are coupled in the surface open ocean, but they are also affected by other geographical and temporal variations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We carried out 16 photochemical experiments of filtered surface water in a custom-built solar simulator and concomitant measurements of in vitro gross primary production (GPP) and respiration (R) in the Mauritanian upwelling during a Lagrangian study following three sulfur hexafluoride–labeled patches of upwelled water (P1 to P3). Oxygen photolysis rates were correlated with the absorbance of chromophoric dissolved organic matter (CDOM) at 300 nm, suggesting first-order kinetics with respect to CDOM. An exponential fit was used to calculate the apparent quantum yield (AQY) for oxygen photolysis, giving an average AQY of 0.00053 µmol O2 (mole photons m−2 s−1)−1 at 280 nm and slope of 0.0012 nm−1. Modeled photochemical oxygen demand (POD) at the surface (3–16 mmol m−3 d−1) occasionally exceeded R and was dominated by ultraviolet radiation (71–79%). Euphotic-layer integrated GPP decreased with time during both P-1 and P-3, whereas R remained relatively constant and POD increased during P-1 and decreased during P-3. On Day 4 of P-3, GPP and POD maxima coincided with high CDOM absorbance, suggesting “new” CDOM production. Omitting POD may lead to an underestimation of net community production (NCP), both through in vitro and geochemical methods (here by 2–22%). We propose that oxygen-based NCP estimates should be revised upward. For the Mauritanian upwelling, the POD-corrected NCP was strongly correlated with standard NCP with a slope of 1.0066 ± 0.0244 and intercept of 46.51 ± 13.15 mmol m−2 d−1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll a (chl a) as a first-order predictor of primary production may lead to substantial errors due to significant quantities of coloured dissolved organic matter (CDOM) and total suspended material (TSM) within the first optical depth. We demonstrate the use of phytoplankton absorption as a proxy to estimate primary production in the coastal waters of the North Sea and Western English Channel for both total, micro- and nano+pico-phytoplankton production. The method is implemented to extrapolate the absorption coefficient of phytoplankton and production at the sea surface to depth to give integrated fields of total and micro- and nano+pico-phytoplankton primary production using the peak in absorption coefficient at red wavelengths. The model is accurate to 8% in the Western English Channel and 22% in this region and the North Sea. By comparison, the accuracy of similar chl a based production models was >250%. The applicability of the method to autonomous optical sensors and remotely sensed aircraft data in both coastal and estuarine environments is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Field campaigns are instrumental in providing ground truth for understanding and modeling global ocean biogeochemical budgets. A survey however can only inspect a fraction of the global oceans, typically a region hundreds of kilometers wide for a temporal window of the order of (at most) several weeks. This spatiotemporal domain is also the one in which the mesoscale activity induces through horizontal stirring a strong variability in the biogeochemical tracers, with ephemeral, local contrasts which can easily mask the regional and seasonal gradients. Therefore, whenever local in situ measures are used to infer larger-scale budgets, one faces the challenge of identifying the mesoscale structuring effect, if not simply to filter it out. In the case of the KEOPS2 investigation of biogeochemical responses to natural iron fertilization, this problem was tackled by designing an adaptive sampling strategy based on regionally optimized multisatellite products analyzed in real time by specifically designed Lagrangian diagnostics. This strategy identified the different mesoscale and stirring structures present in the region and tracked the dynamical frontiers among them. It also enabled back trajectories for the ship-sampled stations to be estimated, providing important insights into the timing and pathways of iron supply, which were explored further using a model based on first-order iron removal. This context was essential for the interpretation of the field results. The mesoscale circulation-based strategy was also validated post-cruise by comparing the Lagrangian maps derived from satellites with the patterns of more than one hundred drifters, including some adaptively released during KEOPS2 and a subsequent research voyage. The KEOPS2 strategy was adapted to the specific biogeochemical characteristics of the region, but its principles are general and will be useful for future in situ biogeochemical surveys.