873 resultados para FINITE-ELEMENT SIMULATION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"UILU-ENG 78 1738."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coherent Ge(Si)/Si(001) quantum dot islands grown by solid source molecular beam epitaxy at a growth temperature of 700degreesC were investigated using transmission electron microscopy working at 300 kV. The [001] zone-axis bright-field diffraction contrast images of the islands show strong periodicity with the change of the TEM sample substrate thickness and the period is equal to the effective extinction distance of the transmitted beam. Simulated images based on finite element models of the displacement field and using multi-beam dynamical diffraction theory show a high degree of agreement. Studies for a range of electron energies show the power of the technique for investigating composition segregation in quantum dot islands. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reviews the recent developments in the mechanics of superplasticity and its applications in industrial practice. After introducing the phenomena of superplasticity, the basic experiments for determining material deformation behavior and related parameters, and constructing superplastic constitutive equations, are reviewed. Finite element related formulations and techniques for simulating superplastic forming are discussed, together with some practical applications. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole, (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy ECG simulation when it is used in heart torso model-based body surface potential simulation studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small-angle neutron scattering measurements on a series of monodisperse linear entangled polystyrene melts in nonlinear flow through an abrupt 4:1 contraction have been made. Clear signatures of melt deformation and subsequent relaxation can be observed in the scattering patterns, which were taken along the centerline. These data are compared with the predictions of a recently derived molecular theory. Two levels of molecular theory are used: a detailed equation describing the evolution of molecular structure over all length scales relevant to the scattering data and a simplified version of the model, which is suitable for finite element computations. The velocity field for the complex melt flow is computed using the simplified model and scattering predictions are made by feeding these flow histories into the detailed model. The modeling quantitatively captures the full scattering intensity patterns over a broad range of data with independent variation of position within the contraction geometry, bulk flow rate and melt molecular weight. The study provides a strong, quantitative validation of current theoretical ideas concerning the microscopic dynamics of entangled polymers which builds upon existing comparisons with nonlinear mechanical stress data. Furthermore, we are able to confirm the appreciable length scale dependence of relaxation in polymer melts and highlight some wider implications of this phenomenon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on our previously developed electrical heart model, an electromechanical biventricular model, which couples the electrical property and mechanical property of the heart, was constructed and the right ventricular wall motion and deformation was simulated using this model. The model was developed on the basis of composite material theory and finite element method. The excitation propagation was simulated by electrical heart model, and the resultant active forces were used to study the ventricular wall motion during systole. The simulation results show that: (1) The right ventricular free wall moves towards the septum, and at the same time, the base and middle of free wall move towards the apex, which reduce the volume of right ventricle; (2) The minimum principle strain (E3) is largest at the apex, then at the middle of free wall, and its direction is in the approximate direction of epicardial muscle fibers. These results are in good accordance with solutions obtained from MR tagging images. It suggests that such electromechanical biventricular model can be used to assess the mechanical function of two ventricles.