958 resultados para Extremal polynomial ultraspherical polynomials
Resumo:
In this paper, we extend the characterization of Zx]/(f), where f is an element of Zx] to be a free Z-module to multivariate polynomial rings over any commutative Noetherian ring, A. The characterization allows us to extend the Grobner basis method of computing a k-vector space basis of residue class polynomial rings over a field k (Macaulay-Buchberger Basis Theorem) to rings, i.e. Ax(1), ... , x(n)]/a, where a subset of Ax(1), ... , x(n)] is an ideal. We give some insights into the characterization for two special cases, when A = Z and A = ktheta(1), ... , theta(m)]. As an application of this characterization, we show that the concept of Border bases can be extended to rings when the corresponding residue class ring is a finitely generated, free A-module. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this article, we analyse several discontinuous Galerkin (DG) methods for the Stokes problem under minimal regularity on the solution. We assume that the velocity u belongs to H-0(1)(Omega)](d) and the pressure p is an element of L-0(2)(Omega). First, we analyse standard DG methods assuming that the right-hand side f belongs to H-1(Omega) boolean AND L-1(Omega)](d). A DG method that is well defined for f belonging to H-1(Omega)](d) is then investigated. The methods under study include stabilized DG methods using equal-order spaces and inf-sup stable ones where the pressure space is one polynomial degree less than the velocity space.
Resumo:
We generalize the results of arXiv : 1212.1875 and arXiv : 1212.6919 on attraction basins and their boundaries to the case of a specific class of rotating black holes,namely the ergo-free branch of extremal black holes in Kaluza-Klein theory. We find that exact solutions that span the attraction basin can be found even in the rotating case by appealing to certain symmetries of the equations of motion. They are characterized by two asymptotic parameters that generalize those of the non-rotating case, and the boundaries of the basin are spinning versions of the (generalized) subtractor geometry. We also give examples to illustrate that the shape of the attraction basin can drastically change depending on the theory.
Resumo:
It is shown that every hyperbolic rigid polynomial domain in C-3 of finite-type, with abelian automorphism group is equivalent to a domain that is balanced with respect to some weight.
Resumo:
The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly in frequency domain. The numerical solution in frequency domain is done by discretisation in space by approximating the unknown function using spectral functions like Chebyshev polynomials, Legendre polynomials and also Normal polynomials. Different numerical methods such as Galerkin Method, Petrov- Galerkin method, Method of moments and Collocation method or the Pseudo-spectral method in frequency domain are studied and compared with the available exact solution. An approximate solution is also obtained for the Timoshenko beam with varying cross-section using Laplace Spectral Element Method (LSEM). The group speeds are computed exactly for the Cantilever beam and Timoshenko beam with uniform cross-section and is compared with the group speeds obtained numerically. The shear mode and the bending modes of the Timoshenko beam with uniform cross-section are separated numerically by applying a modulated pulse as the shear force and the corresponding group speeds for varying taper parameter in are obtained numerically by varying the frequency of the input pulse. An approximate expression for calculating group speeds corresponding to the shear mode and the bending mode, and also the cut-off frequency is obtained. Finally, we show that the cut-off frequency disappears for large in, for epsilon > 0 and increases for large in, for epsilon < 0.
Resumo:
In this research work, we introduce a novel approach for phase estimation from noisy reconstructed interference fields in digital holographic interferometry using an unscented Kalman filter. Unlike conventionally used unwrapping algorithms and piecewise polynomial approximation approaches, this paper proposes, for the first time to the best of our knowledge, a signal tracking approach for phase estimation. The state space model derived in this approach is inspired from the Taylor series expansion of the phase function as the process model, and polar to Cartesian conversion as the measurement model. We have characterized our approach by simulations and validated the performance on experimental data (holograms) recorded under various practical conditions. Our study reveals that the proposed approach, when compared with various phase estimation methods available in the literature, outperforms at lower SNR values (i.e., especially in the range 0-20 dB). It is demonstrated with experimental data as well that the proposed approach is a better choice for estimating rapidly varying phase with high dynamic range and noise. (C) 2014 Optical Society of America
Resumo:
Amorphous solids prepared from their melt state exhibit glass transition phenomenon upon heating. Viscosity, specific heat, and thermal expansion coefficient of the amorphous solids show rapid changes at the glass transition temperature (T-g). Generally, application of high pressure increases the T-g and this increase (a positive dT(g)/dP) has been understood adequately with free volume and entropy models which are purely thermodynamic in origin. In this study, the electrical resistivity of semiconducting As2Te3 glass at high pressures as a function of temperature has been measured in a Bridgman anvil apparatus. Electrical resistivity showed a pronounced change at T-g. The T-g estimated from the slope change in the resistivity-temperature plot shows a decreasing trend (negative dT(g)/dP). The dT(g)/dP was found to be -2.36 degrees C/kbar for a linear fit and -2.99 degrees C/kbar for a polynomial fit in the pressure range 1 bar to 9 kbar. Chalcogenide glasses like Se, As2Se3, and As30Se30Te40 show a positive dT(g)/dP which is very well understood in terms of the thermodynamic models. The negative dT(g)/dP (which is generally uncommon in liquids) observed for As2Te3 glass is against the predictions of the thermodynamic models. The Adam-Gibbs model of viscosity suggests a direct relationship between the isothermal pressure derivative of viscosity and the relaxational expansion coefficient. When the sign of the thermal expansion coefficient is negative, dT(g)/dP = Delta k/Delta alpha will be less than zero, which can result in a negative dT(g)/dP. In general, chalcogenides rich in tellurium show a negative thermal expansion coefficient (NTE) in the supercooled and stable liquid states. Hence, the negative dT(g)/dP observed in this study can be understood on the basis of the Adams-Gibbs model. An electronic model proposed by deNeufville and Rockstad finds a linear relation between T-g and the optical band gap (E-g for covalent semiconducting glasses when they are grouped according to their average coordination number. The electrical band gap (Delta E) of As2Te3 glass decreases with pressure. The optical and electrical band gaps are related as Delta E-g = 2 Delta E; thus, a negative dT(g)/dP is expected when As2Te3 glass is subjected to high pressures. In this sense, As2Te3 is a unique glass where its variation of T-g with pressure can be understood by both electronic and thermodynamic models.
Resumo:
Maximality of a contractive tuple of operators is considered. A characterization for a contractive tuple to be maximal is obtained. The notion of maximality for a submodule of the Drury-Arveson module on the -dimensional unit ball is defined. For , it is shown that every submodule of the Hardy module over the unit disc is maximal. But for we prove that any homogeneous submodule or submodule generated by polynomials is not maximal. A characterization of maximal submodules is obtained.
Resumo:
In this paper, we study a problem of designing a multi-hop wireless network for interconnecting sensors (hereafter called source nodes) to a Base Station (BS), by deploying a minimum number of relay nodes at a subset of given potential locations, while meeting a quality of service (QoS) objective specified as a hop count bound for paths from the sources to the BS. The hop count bound suffices to ensure a certain probability of the data being delivered to the BS within a given maximum delay under a light traffic model. We observe that the problem is NP-Hard. For this problem, we propose a polynomial time approximation algorithm based on iteratively constructing shortest path trees and heuristically pruning away the relay nodes used until the hop count bound is violated. Results show that the algorithm performs efficiently in various randomly generated network scenarios; in over 90% of the tested scenarios, it gave solutions that were either optimal or were worse than optimal by just one relay. We then use random graph techniques to obtain, under a certain stochastic setting, an upper bound on the average case approximation ratio of a class of algorithms (including the proposed algorithm) for this problem as a function of the number of source nodes, and the hop count bound. To the best of our knowledge, the average case analysis is the first of its kind in the relay placement literature. Since the design is based on a light traffic model, we also provide simulation results (using models for the IEEE 802.15.4 physical layer and medium access control) to assess the traffic levels up to which the QoS objectives continue to be met. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Let Z(n) denote the ring of integers modulo n. A permutation of Z(n) is a sequence of n distinct elements of Z(n). Addition and subtraction of two permutations is defined element-wise. In this paper we consider two extremal problems on permutations of Z(n), namely, the maximum size of a collection of permutations such that the sum of any two distinct permutations in the collection is again a permutation, and the maximum size of a collection of permutations such that no sum of two distinct permutations in the collection is a permutation. Let the sizes be denoted by s (n) and t (n) respectively. The case when n is even is trivial in both the cases, with s (n) = 1 and t (n) = n!. For n odd, we prove (n phi(n))/2(k) <= s(n) <= n!.2(-)(n-1)/2/((n-1)/2)! and 2 (n-1)/2 . (n-1/2)! <= t (n) <= 2(k) . (n-1)!/phi(n), where k is the number of distinct prime divisors of n and phi is the Euler's totient function.
Resumo:
This paper addresses trajectory generation problem of a fixed-wing miniature air vehicle, constrained by bounded turn rate, to follow a given sequence of waypoints. An extremal path, named as g-trajectory, that transitions between two consecutive waypoint segments (obtained by joining two waypoints in sequence) in a time-optimal fashion is obtained. This algorithm is also used to track the maximum portion of waypoint segments with the desired shortest distance between the trajectory and the associated waypoint. Subsequently, the proposed trajectory is compared with the existing transition trajectory in the literature to show better performance in several aspects. Another optimal path, named as loop trajectory, is developed for the purpose of tracking the waypoints as well as the entire waypoint segments. This paper also proposes algorithms to generate trajectories in the presence of steady wind to meet the same objective as that of no-wind case. Due to low computational burden and simplicity in the design procedure, these trajectory generation approaches are implementable in real time for miniature air vehicles.
Resumo:
This work is a follow up to 2, FUN 2010], which initiated a detailed analysis of the popular game of UNO (R). We consider the solitaire version of the game, which was shown to be NP-complete. In 2], the authors also demonstrate a (O)(n)(c(2)) algorithm, where c is the number of colors across all the cards, which implies, in particular that the problem is polynomial time when the number of colors is a constant. In this work, we propose a kernelization algorithm, a consequence of which is that the problem is fixed-parameter tractable when the number of colors is treated as a parameter. This removes the exponential dependence on c and answers the question stated in 2] in the affirmative. We also introduce a natural and possibly more challenging version of UNO that we call ``All Or None UNO''. For this variant, we prove that even the single-player version is NP-complete, and we show a single-exponential FPT algorithm, along with a cubic kernel.
Resumo:
The boxicity (resp. cubicity) of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R-k. Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V, such that the intersection of their edge sets is E. The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O(n(1-epsilon))-factor for any epsilon > 0 in polynomial time, unless NP = ZPP. For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n(1-epsilon)-factor approximation algorithm for computing boxicity in polynomial time, for any epsilon > 0. In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Omega(n). We give a (2 + 1/k) -factor (resp. (2 + log n]/k)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k >= 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn + n(2)) in both these cases, and in O(mn + kn(2)) = O(n(3)) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We address the parameterized complexity ofMaxColorable Induced Subgraph on perfect graphs. The problem asks for a maximum sized q-colorable induced subgraph of an input graph G. Yannakakis and Gavril IPL 1987] showed that this problem is NP-complete even on split graphs if q is part of input, but gave a n(O(q)) algorithm on chordal graphs. We first observe that the problem is W2]-hard parameterized by q, even on split graphs. However, when parameterized by l, the number of vertices in the solution, we give two fixed-parameter tractable algorithms. The first algorithm runs in time 5.44(l) (n+#alpha(G))(O(1)) where #alpha(G) is the number of maximal independent sets of the input graph. The second algorithm runs in time q(l+o()l())n(O(1))T(alpha) where T-alpha is the time required to find a maximum independent set in any induced subgraph of G. The first algorithm is efficient when the input graph contains only polynomially many maximal independent sets; for example split graphs and co-chordal graphs. The running time of the second algorithm is FPT in l alone (whenever T-alpha is a polynomial in n), since q <= l for all non-trivial situations. Finally, we show that (under standard complexitytheoretic assumptions) the problem does not admit a polynomial kernel on split and perfect graphs in the following sense: (a) On split graphs, we do not expect a polynomial kernel if q is a part of the input. (b) On perfect graphs, we do not expect a polynomial kernel even for fixed values of q >= 2.
Resumo:
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.