901 resultados para Extracellular Dopamine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

KRAS activation and PTEN inactivation are frequent events in endometrial tumorigenesis, occurring in 10% to 30% and 26% to 80% of endometrial cancers, respectively. Because we have recently shown activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 16% of endometrioid endometrial cancers, we sought to determine the genetic context in which FGFR2 mutations occur. Analysis of 116 primary endometrioid endometrial cancers revealed that FGFR2 and KRAS mutations were mutually exclusive, whereas FGFR2 mutations were seen concomitantly with PTEN mutations. Here, we show that shRNA knockdown of FGFR2 or treatment with a pan-FGFR inhibitor, PD173074, resulted in cell cycle arrest and induction of cell death in endometrial cancer cells with activating mutations in FGFR2. This cell death in response to FGFR2 inhibition occurred within the context of loss-of-function mutations in PTEN and constitutive AKT phosphorylation, and was associated with a marked reduction in extracellular signal-regulated kinase 1/2 activation. Together, these data suggest that inhibition of FGFR2 may be a viable therapeutic option in endometrial tumors possessing activating mutations in FGFR2, despite the frequent abrogation of PTEN in this cancer type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Hreceptor (VEGFR) and FGF receptor (FGFR) signaling pathways. EXPERIMENTAL DESIGN: Six different s.c. patient-derived HCC xenografts were implanted into mice. Tumor growth was evaluated in mice treated with brivanib compared with control. The effects of brivanib on apoptosis and cell proliferation were evaluated by immunohistochemistry. The SK-HEP1 and HepG2 cells were used to investigate the effects of brivanib on the VEGFR-2 and FGFR-1 signaling pathways in vitro. Western blotting was used to determine changes in proteins in these xenografts and cell lines. RESULTS: Brivanib significantly suppressed tumor growth in five of six xenograft lines. Furthermore, brivanib-induced growth inhibition was associated with a decrease in phosphorylated VEGFR-2 at Tyr(1054/1059), increased apoptosis, reduced microvessel density, inhibition of cell proliferation, and down-regulation of cell cycle regulators. The levels of FGFR-1 and FGFR-2 expression in these xenograft lines were positively correlated with its sensitivity to brivanib-induced growth inhibition. In VEGF-stimulated and basic FGF stimulated SK-HEP1 cells, brivanib significantly inhibited VEGFR-2, FGFR-1, extracellular signal-regulated kinase 1/2, and Akt phosphorylation. CONCLUSION: This study provides a strong rationale for clinical investigation of brivanib in patients with HCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts-soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non-identical by a number of parameters, and that these differences have significant ramifications for their ligand-binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS-dependent factors between the ECM and the cell surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocytosis is the process by which cells internalise molecules including nutrient proteins from the extracellular media. In one form, macropinocytosis, the membrane at the cell surface ruffles and folds over to give rise to an internalised vesicle. Negatively charged phospholipids within the membrane called phosphoinositides then undergo a series of transformations that are critical for the correct trafficking of the vesicle within the cell, and which are often pirated by pathogens such as Salmonella. Advanced fluorescent video microscopy imaging now allows the detailed observation and quantification of these events in live cells over time. Here we use these observations as a basis for building differential equation models of the transformations. An initial investigation of these interactions was modelled with reaction rates proportional to the sum of the concentrations of the individual constituents. A first order linear system for the concentrations results. The structure of the system enables analytical expressions to be obtained and the problem becomes one of determining the reaction rates which generate the observed data plots. We present results with reaction rates which capture the general behaviour of the reactions so that we now have a complete mathematical model of phosphoinositide transformations that fits the experimental observations. Some excellent fits are obtained with modulated exponential functions; however, these are not solutions of the linear system. The question arises as to how the model may be modified to obtain a system whose solution provides a more accurate fit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Bioimpedance techniques provide a reliable method of assessing unilateral lymphedema in a clinical setting. Bioimpedance devices are traditionally used to assess body composition at a current frequency of 50 kHz. However, these devices are not transferable to the assessment of lymphedema, as the sensitivity of measuring the impedance of extracellular fluid is frequency dependent. It has previously been shown that the best frequency to detect extracellular fluid is 0 kHz (or DC). However, measurement at this frequency is not possible in practice due to the high skin impedance at DC, and an estimate is usually determined from low frequency measurements. This study investigated the efficacy of various low frequency ranges for the detection of lymphedema. Methods and Results: Limb impedance was measured at 256 frequencies between 3 kHz and 1000 kHz for a sample control population, arm lymphedema population, and leg lymphedema population. Limb impedance was measured using the ImpediMed SFB7 and ImpediMed L-Dex® U400 with equipotential electrode placement on the wrists and ankles. The contralateral limb impedance ratio for arms and legs was used to calculate a lymphedema index (L-Dex) at each measurement frequency. The standard deviation of the limb impedance ratio in a healthy control population has been shown to increase with frequency for both the arm and leg. Box and whisker plots of the spread of the control and lymphedema populations show that there exists good differentiation between the arm and leg L-Dex measured for lymphedema subjects and the arm and leg L-Dex measured for control subjects up to a frequency of about 30 kHz. Conclusions: It can be concluded that impedance measurements above a frequency of 30 kHz decrease sensitivity to extracellular fluid and are not reliable for early detection of lymphedema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transglutaminases are confounding enzymes which are known to play key roles in various cellular processes. In this paper, we aim to bring together several pieces of evidence from published research and literature that suggest a potentially vital role for transglutaminases in receptor tyrosine kinases (RTK) signalling. We cite literature that confirms and suggests the formation of integrin:RTK:transglutaminase complexes and explores the occurrence and functionality of these complexes in a large fraction of the RTK family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PKU is a genetically inherited inborn error of metabolism caused by a deficiency of the enzyme phenylalanine hydroxylase. The failure of this enzyme causes incomplete metabolism of protein ingested in the diet, specifically the conversion of one amino acid, phenylalanine, to tyrosine, which is a precursor to the neurotransmitter dopamine. Rising levels of phenylalanine is toxic to the developing brain, disrupting the formation of white matter tracts. The impact of tyrosine deficiency is not as well understood, but is hypothesized to lead to a low dopamine environment for the developing brain. Detection in the newborn period and continuous treatment (a low protein phe-restricted diet supplemented with phenylalanine-free protein formulas) has resulted in children with early and continuously treated PKU now developing normal I.Q. However, deficits in executive function (EF) are common, leading to a rate of Attention Deficit Hyperactivity Disorder (ADHD) up to five times the norm. EF worsens with exposure to higher phenylalanine levels, however recent research has demonstrated that a high phenylalanine to tyrosine ratio (phenylalanine:tyrosine ratio), which is hypothesised to lead to poorer dopamine function, has a more negative impact on EF than phenylalanine levels alone. Research and treatment of PKU is currently phenylalanine-focused, with little investigation of the impact of tyrosine on neuropsychological development. There is no current consensus as to the veracity of tyrosine monitoring or treatment in this population. Further, the research agenda in this population has demonstrated a primary focus on EF impairment alone, even though there may be additional neuropsychological skills compromised (e.g., mood, visuospatial deficits). The aim of this PhD research was to identify residual neuropsychological deficits in a cohort of children with early and continuously treated phenylketonuria, at two time points in development (early childhood and early adolescence), separated by eight years. In addition, this research sought to determine which biochemical markers were associated with neuropsychological impairments. A clinical practice survey was also undertaken to ascertain the current level of monitoring/treatment of tyrosine in this population. Thirteen children with early and continuously treated PKU were tested at mean age 5.9 years and again at mean age 13.95 years on several neuropsychological measures. Four children with hyperphenylalaninemia (a milder version of PKU) were also tested at both time points and provide a comparison group in analyses. Associations between neuropsychological function and biochemical markers were analysed. A between groups analysis in adolescence was also conducted (children with PKU compared to their siblings) on parent report measures of EF and mood. Minor EF impairments were evident in the PKU group by age 6 years and these persisted into adolescence. Life-long exposure to high phenylalanine:tyrosine ratio and/or low tyrosine independent of phenylalanine were significantly associated with EF impairments at both time points. Over half the children with PKU showed severe impairment on a visuospatial task, and this was associated only with concurrent levels of tyrosine in adolescence. Children with PKU also showed a statistically significant decline in a language comprehension task from 6 years to adolescence (going from normal to subnormal), this deficit was associated with lifetime levels of phenylalanine. In comparison, the four children with hyperphenylalaninemia demonstrated normal function at both time points, across all measures. No statistically significant differences were detected between children with PKU and their siblings on the parent report of EF and mood. However, depressive symptoms were significantly correlated with: EF; long term high phe:tyr exposure; and low tyrosine levels independent of phenylalanine. The practice survey of metabolic clinics from 12 countries indicated a high level of variability in terms of monitoring/treatment of tyrosine in this population. Whilst over 80% of clinics surveyed routinely monitored tyrosine levels in their child patients, 25% reported treatment strategies to increase tyrosine (and thereby lower the phenylalanine:tyrosine ratio) under a variety of patient presentation conditions. Overall, these studies have shown that EF impairments associated with PKU provide support for the dopamine-deficiency model. A language comprehension task showed a different trajectory, serving a timely reminder that non-EF functions also remain vulnerable in this population; and that normal function in childhood does not guarantee normal function by adolescence. Mood impairments were associated with EF impairments as well as long term measures of phenylalanine:tyrosine and/or tyrosine. The implications of this research for enhanced clinical guidelines are discussed given varied current practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cabergoline is an ergotamine derivative that increases the expression of glial cell line-derived neurotrophic factor (GDNF) in vitro. We recently showed that GDNF in the ventral tegmental area (VTA) reduces the motivation to consume alcohol. We therefore set out to determine whether cabergoline administration decreases alcohol-drinking and -seeking behaviors via GDNF. Methods: Reverse transcription polymerase chain reaction (RT-PCR) and Enzyme-Linked ImmunoSorbent Assay (ELISA) were used to measure GDNF levels. Western blot analysis was used for phosphorylation experiments. Operant self-administration in rats and a two-bottle choice procedure in mice were used to assess alcohol-drinking behaviors. Instrumental performance tested during extinction was used to measure alcohol-seeking behavior. The [35S]GTPγS binding assay was used to assess the expression and function of the dopamine D2 receptor (D2R). Results: We found that treatment of the dopaminergic-like cell line SH-SY5Y with cabergoline and systemic administration of cabergoline in rats resulted in an increase in GDNF level and in the activation of the GDNF pathway. Cabergoline treatment decreased alcohol-drinking and -seeking behaviors including relapse, and its action to reduce alcohol consumption was localized to the VTA. Finally, the increase in GDNF expression and the decrease in alcohol consumption by cabergoline were abolished in GDNF heterozygous knockout mice. Conclusions: Together, these findings suggest that cabergoline-mediated upregulation of the GDNF pathway attenuates alcohol-drinking behaviors and relapse. Alcohol abuse and addiction are devastating and costly problems worldwide. This study puts forward the possibility that cabergoline might be an effective treatment for these disorders. © 2009 Society of Biological Psychiatry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distinct calcium profile is strongly implicated in regulating the multi-layered structure of the epidermis. However, the mechanisms that govern the regulation of this calcium profile are currently unclear. It clearly depends on the relatively impermeable barrier of the stratum corneum (passive regulation) but may also depend on calcium exchanges between keratinocytes and extracellular fluid (active regulation). Using a mathematical model that treats the viable sublayers of unwounded human and murine epidermis as porous media and assumes that their calcium profiles are passively regulated, we demonstrate that these profiles are also actively regulated. To obtain this result, we found that diffusion governs extracellular calcium motion in the viable epidermis and hence intracellular calcium is the main source of the epidermal calcium profile. Then, by comparison with experimental calcium profiles and combination with a hypothesised cell velocity distribution in the viable epidermis, we found that the net influx of calcium ions into keratinocytes from extracellular fluid may be constant and positive throughout the stratum basale and stratum spinosum, and that there is a net outflux of these ions in the stratum granulosum. Hence the calcium exchange between keratinocytes and extracellular fluid differs distinctly between the stratum granulosum and the underlying sublayers, and these differences actively regulate the epidermal calcium profile. Our results also indicate that plasma membrane dysfunction may be an early event during keratinocyte disintegration in the stratum granulosum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a porous medium model of the growth and deterioration of the viable sublayers of an epidermal skin substitute. It consists of five species: cells, intracellular and extracellular calcium, tight junctions, and a hypothesised signal chemical emanating from the stratum corneum. The model is solved numerically in Matlab using a finite difference scheme. Steady state calcium distributions are predicted that agree well with the experimental data. Our model also demonstrates epidermal skin substitute deterioration if the calcium diffusion coefficient is reduced compared to reported values in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is organized in depth zones with phenotypically distinct subpopulations of chondrocytes that are exposed to different oxygen tensions. Despite growing evidence of the critical role for oxygen in chondrogenesis, little is known about its effect on chondrocytes from different zones. This study evaluates zonal marker expression of human articular chondrocytes from different zones under various oxygen tensions. Chondrocytes isolated from full-thickness, superficial, and middle/deep cartilage from knee replacement surgeries were expanded and redifferentiated under hypoxic (5% O 2) or normoxic (20% O 2) conditions. Differentiation under hypoxia increased expression of hypoxia-inducible factors 1alpha and 2alpha and accumulation of extracellular matrix, particularly in middle/deep chondrocytes, and favored re-expression of proteoglycan 4 by superficial chondrocytes compared with middle/deep cells. Zone-dependent expression of clusterin varied with culture duration. These results demonstrate that zonal chondrocytes retain important phenotypic differences during in vitro cultivation, and that these characteristics can be improved by altering the oxygen environment. However, transcript levels for pleiotrophin, cartilage intermediate layer protein, and collagen type X were similar between zones, challenging their reliability as zonal markers for tissue-engineered cartilage from osteoarthritis patients. Key factors including oxygen tension and cell source should be considered to prescribe zone-specific properties to tissue-engineered cartilage. © 2012, Mary Ann Liebert, Inc.