927 resultados para Evaporative cooling
Resumo:
We report on exchange bias effects in 10 nm particles of Pr0.5Ca0.5MnO3 which appear as a result of competing interactions between the ferromagnetic (FM)/anti-ferromagnetic (AFM) phases. The fascinating new observation is the demonstration of the temperature dependence of oscillatory exchange bias (OEB) and is tunable as a function of cooling field strength below the SG phase, may be attributable to the presence of charge/spin density wave (CDW/SDW) in the AFM core of PCMO10. The pronounced training effect is noticed at 5 K from the variation of the EB field as a function of number of field cycles (n) upon the field cooling (FC) process. For n > 1, power-law behavior describes the experimental data well; however, the breakdown of spin configuration model is noticed at n >= 1. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3696033]
Resumo:
Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t(TI)/t(ff)) falls below a critical threshold of approximate to 10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Ha filaments. These cold gas clumps and filaments ``rain'' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t(TI)/t(ff) > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t(TI)/t(ff) less than or similar to 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.
Resumo:
The loop heat pipe (LHP) is a passive two-phase heat transport device that is gaining importance as a part of spacecraft thermal control systems and also in applications such as in avionics cooling and submarines. A major advantage of a loop heat pipe is that the porous wick structure is confuned to the evaporator section, and connection between the evaporator and condenser sections is by smooth tubes, thus minimizing pressure drop. A brief overview of loop heat pipes with respect to basic fundamentals, construction details, operating principles, and typical operating characteristics is presented in this paper. Finally, the paper presents the current developments in modeling of thermohydraulics and design methodologies of LHPs.
Resumo:
Magnetoelectric multiferroic BiFeO3 (BFO) was synthesized by a simple carbonate precipitation technique of metal nitrate solutions. X-ray powder diffraction and thermo-gravimetric analysis (TGA) revealed that the precipitate consists of an intimate mixture of crystalline bismuth carbonate and an amorphous hydroxide of iron. The precipitate yielded BiFeO3 at an optimal calcination temperature of similar to 560A degrees C. Energy dispersive X-ray (EDX) analysis showed 1:1 ratio between Bi and Fe in the oxide. X-ray photoelectron spectroscopy (XPS) studies confirmed that Fe to be in +3 oxidation states both in the precipitated powder and BiFeO3. The synthesized BFO exhibits a very weak ferromagnetic correlation at room temperature and the degree of which increases slightly on cooling down to 10 K suggesting alteration in the long range spatial modulation of the spins arrangement as compared to the bulk BiFeO3.
Resumo:
This article addresses the adaptation of a low-power natural gas engine for using producer gas as a fuel. The 5.9 L natural gas engine with a compression ratio of 10.5:1, rated at 55 kW shaft power, delivered 30 kW using producer gas as fuel in the naturally aspirated mode. Optimal ignition timing for peak power was found to be 20 degrees before top dead centre. Air-to-fuel ratio (A/F) was found to be 1.2 +/- 0.1 over a range of loads. Critical evaluation of the energy flows in the engine resulted in identifying losses and optimizing the engine cooling. The specific fuel consumption was found to be 1.2 +/- 0.1 kg of biomass per kilowatt hour. A reduction of 40 per cent in brake mean effective pressure was observed compared with natural gas operation. Governor response to load variations has been studied with respect to frequency recovery time. The study also attempts to adopt a turbocharger for higher power output. Preliminary results suggest a possibility of about 30 per cent increase in the output.
Resumo:
Metallic and other type of coatings on fiber Bragg grating (FBG) sensors alter their sensitivity with thermal and mechanical stress while protecting the fragile optical fiber in harsh sensing surroundings. The behavior of the coated materials is unique in their response to thermal and mechanical stress depending on the thickness and the mode of coating. The thermal stress during the coating affects the temperature sensitivity of FBG sensors. We have explored the thermal response of FBGs coated with Al and Pb to an average thickness of 80 nm using flash evaporation technique where the FBG sensor is mounted in a region at room temperature in an evacuated chamber having a pressure of 10(6) Torr which will minimize any thermal stress during the coating process. The coating thickness is chosen in the nanometer region with the aim to study thermal behavior of nanocoatings and their effect on FBG sensitivity. The sensitivity of FBGs is evaluated from the wavelengths recorded using an optical sensing interrogator sm 130 (Micron Optics) from room temperature to 300 degrees C both during heating and cooling. It is observed that the sensitivity of the metal coated fibers is better than the reference FBG with no coating for the entire range of temperature. For a coating thickness of 80 nm, Al coated FBG is more sensitive than the one coated with Pb up to 170 degrees C and it reverses at higher temperatures. This point is identified as a reversible phase transition in Pb monolayers as the 2-dimensional aspects of the metal layers are dominant in the nanocoatings of Pb. On cooling, the phase transition reverses and the FBGs return to the original state and for repeated cycles of heating and cooling the same pattern is observed. Thus the FBG functions as a sensor of the phase transitions of the coatings also. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper presents an investigation of the fluid flow in the fully developed portion of a rectangular channel (Aspect Ratio of 2) with dimples applied to one wall at channel Reynolds numbers of 20,000, 30,000, and 40,000. The dimples are applied in a staggered-row, racetrack configuration. Results for three different dimple geometries are presented: a large dimple, small dimple, and double dimple. Heat transfer and aerodynamic results from preceding works are presented in Nusselt number and friction factor augmentation plots as determined experimentally. Using particle image velocimetry, the region near the dimple feature is studied in detail in the location of the entrainment and ejection of vortical packets into and out of the dimple; the downstream wake region behind each dimple is also studied to examine the effects of the local flow phenomenon that result in improved heat transfer in the areas of the channel wall not occupied by a feature. The focus of the paper is to examine the secondary flows in these dimpled channels in order to support the previously presented heat transfer trends. The flow visualization is also intended to improve the understanding of the flow disturbances in a dimpled channel; a better understanding of these effects would lead the development of more effective channel cooling designs. Copyright © 2011 by ASME.
Resumo:
A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO2 leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (-8.2 W m(-2)) to counter global mean radiative forcing from a doubling of CO2 (3.3 W m(-2)) is approximately twice the forcing needed over the oceans (-4.2 W m(-2)). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification.
Resumo:
Sapphirine-cordierite intergrowths occur as pods within garnet-absent, high-Mg orthopyroxene-granulite xenoliths in the Kambam valley, Madurai Block, southern India. Whereas the cores of the pods are composed of sapphirine (X-Mg = 0.871-0.897) - cordierite (X-Mg = 0.892-0.931) intergrowth along with rutile, zircon and monazite, the rims are characterized by cordierite, apatite, plagioclase, K-feldspar, quartz and minor calcite. The surrounding matrix comprises orthopyroxene (maximum Al2O3 4.1 wt.%, X-Mg 0.848-0.850), plagioclase, biotite and quartz, similar to the assemblage in the surrounding charnockites. Sapphirine in the Kambam rocks is characterized by high Al contents with an end-member composition in the range of 7:9:3 and 3:5:1. The occurrence of peraluminous sapphirine in association with cordierite and in the absence of phases such as sillimanite and garnet is distinct from ultrahigh-temperature assemblages in other localities within the Madurai Block. The peraluminous composition of the pods suggests that these domains could represent cryptic pathways through which aluminous melts migrated. The reaction of such peraluminous melts with Mg-rich orthopyroxene in the host granulite at temperatures of 1025 degrees C and pressures around 8 kbar as computed from phase equilibria modeling followed by an isobaric cooling is inferred to have generated the sapphirine-cordierite pods. The unusual high-Mg orthopyroxene granulite suggests interaction of supracrustal rocks with mafic magmas, which probably acted as the heat source for the partial melting of lower crust and UHT metamorphism.
Resumo:
Single and two-stage Pulse Tube Cryocoolers (PTC) have been designed, fabricated and experimentally studied. The single stage PTC reaches a no-load temperature of similar to 29 K at its cold end, the two-stage PTC reaches similar to 2.9 K in its second stage cold end and similar to 60 K in its first stage cold end. The two-stage Pulse Tube Cryocooler provides a cooling power of similar to 250 mW at 4.2 K. The single stage system uses stainless steel meshes along with Pb granules as its regenerator materials, while the two-stage PTC uses combinations of Pb along with Er3Ni/HoCu2 as the second stage regenerator materials. Normally, the above systems are insulated by thermal radiation shields and mounted inside a vacuum chamber which is maintained at high vacuum. To evaluate the performance of these systems in the possible conditions of loss of vacuum with and without radiation shields, experimental studies have been performed. The heat-in-leak under such severe conditions has been estimated from the heat load characteristics of the respective stages. The experimental results are analyzed to obtain surface emissivities and effective thermal conductivities as a function of interspace pressure.
Resumo:
Laminar natural convection in a series of thermally interacting cavities is numerically studied. Each cavity consists of a conducting bottom wall with a surface mounted heater. The side walls of the cavities are isothermally cooled. Each cavity thermally interacts with its adjacent cavities through the conducting walls. Flow and heat transfer characteristics are studied in detail for various Rayleigh numbers. The convection characteristics in multiple cavities are compared with those in single independent cavity. The thermal interaction between the cavities results in lower temperatures compared with those in independent cavities. While heat is rejected into the adjacent upper cavity through some portion of the conducting wall, heat is received from the adjacent cavity through the remaining portion of the wall. The influence of substrate conductivity on heat exchange between adjacent cavities are examined. Substrate conductivity shows strong effect on temperature distribution. When cooling at both vertical sides is changed to one side cooling, the heat transfer characteristics are changed drastically and many interesting flow features are observed. Effects of cavity aspect ratio is studied and higher heat transfer rates are observed at higher aspect ratios. Correlations for dimensionless temperature maximum and average Nusselt number are presented in terms of Rayleigh number.
Resumo:
A new coupled approach is presented for modeling the hydrogen bubble evolution and engulfment during an aluminum alloy solidification process in a micro-scale domain. An explicit enthalpy scheme is used to model the solidification process which is coupled with a level-set method for tracking the hydrogen bubble evolution. The volume averaging techniques are used to model mass, momentum, energy and species conservation equations in the chosen micro-scale domain. The interaction between the solid, liquid and gas interfaces in the system have been studied. Using an order-of-magnitude study on growth rates of bubble and solid interfaces, a criterion is developed to predict bubble elongation which can occur during the engulfment phase. Using this model, we provide further evidence in support of a conceptual thought experiment reported in literature, with regard to estimation of final pore shape as a function of typical casting cooling rates. The results from the proposed model are qualitatively compared with in situ experimental observations reported in literature. The ability of the model to predict growth and movement of a hydrogen bubble and its subsequent engulfment by a solidifying front has been demonstrated for varying average cooling rates encountered in typical sand, permanent mold, and various casting processes. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The heat of adsorption of methane, ethane, carbon dioxide, R-507a and R-134a on several specimens of microporous activated carbons is derived from experimental adsorption data fitted to the Dubinin-Astakhov equation. These adsorption results are compared with literature data obtained from calorimetric measurements and from the pressure-temperature relation during isosteric heating/cooling. Because the adsorbed phase volume plays an important role, its dependence on temperature and pressure needs to be correctly assessed. In addition, for super-critical gas adsorption, the evaluation of the pseudo-saturation pressure also needs a judicious treatment. Based on the evaluation of carbon dioxide adsorption, it can be seen that sub-critical and super-critical adsorption show different temperature dependences of the isosteric heat of adsorption. The temperature and loading dependence of this property needs to be taken into account while designing practical systems. Some practical implications of these findings are enumerated.
Resumo:
Resin impregnated paper (RIP) is a relatively new insulation system recommended for the use in transformer bushings. In the recent past, RIP has acquired prominence as insulation in bushings, over conventional oil impregnated paper (OIP), in view of its overwhelming advantages the more important among them being low dielectric loss and possibility for positioning the bushing at any desired angle over the transformer. In addition, the fact that such systems do not pose problems of fire hazard is counted as a very important consideration. The disadvantage of RIP compared to OIP, however, is its much higher cost and involved manufacturing process. The temperature rise in RIP bushings under normal operating conditions is seen to be a difficult parameter to control in view of the limited options for effective cooling. It is therefore essential to take serious note of this aspect, to arrest rapid deterioration of bushing. The degradation of dry-type insulation such as RIP is often due to thermal stress. The long time performance thereof, depends strongly, on the maximum operating temperature. With this in view, the Authors have developed a theoretical model and computational method to study the temperature distribution in the body of insulation. The Authors consider that the basis for the model as being the temperature and electric stress aided AC conductivity. The ensuing heat balance (continuity) equations in 2-D cylindrical geometry are treated as a Dirichelet-Neumann boundary value problem.
Resumo:
Single crystals of lithium D-isoascorbate monohydrate (LDAM), (C6H7O6Li center dot H2O), are grown by a solution growth method. The crystal structure of LDAM is solved using single crystal X-ray diffraction. The space group is orthorhombic P2(1)2(1)2(1) with four formula units per unit cell and lattice parameters a = 7.7836(3) angstrom, b = 8.7456(3) angstrom, and c = 11.0368(4) angstrom. Solubility of the material in water is determined thermogravimetrically and found to have a positive temperature coefficient of solubility. Large optical quality single crystals are subsequently grown from aqueous solution by a slow cooling method. The crystal has a bulky prismatic habit and among the prominent faces the c face appears as the only principal morphological face. The crystal exhibits a (010) cleavage. Dielectric spectroscopy reveals a nearly Debye type Cole-Cole behavior with anisotropy in relaxation. Optical transmission range is found to be from 300 to 1400 nm. The principal refractive indices of this biaxial crystal, measured using Brewster's angle method, at wavelengths 405, 543, and 632.8 nm, show high dispersion. The crystal is negative biaxial with 2V(z) = 107.8 degrees (405 nm) and belongs to the Hobden class 3. Theoretically generated type 1 and type 2 second order phase matching curves match very well with the experimental results. The second-order nonlinear coefficient d(14) was determined to be 7 x 10(-13) m/V. For the optimum phase matching direction (type 2), the second-order effective nonlinear coefficient and the walk off angle are determined to be 0.84 times d(14) and 3.5 degrees respectively. The crystal possesses high multiple surface damage thresholds of 18 GW/cm(2) and 8 GW/cm(2) at laser wavelengths 1064 and 532 nm, respectively.