953 resultados para Eucalyptus forests
Resumo:
Eucalyptus is the most important plantation forest species in Brazil. Wilt and canker caused by Ceratocystis fimbriata on eucalyptus were first reported in 1998 in plantations of an E. grandis × E. urophylla hybrid in southern Bahia, Brazil. This work aimed at studying the reaction of different eucalyptus genotypes after inoculation with C. fimbriata isolates, in order to find a possible source of resistance. The study included four isolates of Ceratocystis collected from eucalyptus in different regions. One disc of fungal mycelium with 1-cm-diameter (from colonies growing for 10 days on malt extract agar medium-MEA) was inoculated on the stem of thus injured eucalyptus plants (six months old). A cotton wool moistened with sterile distilled water was wrapped with plastic film. Control plants were inoculated with discs of MEA without fungal colonies. The inoculated plants were kept in a greenhouse. Wilt symptoms were observed 90 days after inoculation. The seedlings were cut in the longitudinal direction of the stem in order to observe the colonization of fungus in the plant xylem. We tested twenty eucalyptus genotypes, but only five showed resistance to all isolates of Ceratocystis, belonging to different species of Eucalyptus: E. urophylla (C2 and C9), E. grandis (C3), E. saligna (C6 and C13) Most E. gramdis genotypes were more susceptible to all four fungal isolates. These results support future studies related to eucalyptus resistance to Ceratocystis.
Resumo:
Xylose is the main sugar in hemicellulosic hydrolysates and its fermentation into ethanol by microorganisms is influenced by nutritional factors, such as nitrogen source, vitamins and other elements. Rice bran extract (RBE) is an inexpensive nitrogen source primarily consisting of high amount of protein. This study evaluates the potential of RBE as a nitrogen source for the hemicellulosic ethanol production from sugarcane bagasse dilute acid hydrolysate by novel yeast strains Scheffersomyces shehatae (syn. Candida shehatae) CG8-8BY and Spathaspora arborariae UFMG-HM19.1A, isolated from Brazilian forests. Two different media formulations were used for inoculum preparation and production medium, using yeast extract and RBE as nitrogen sources. S. shehatae CG8-8BY showed ethanol production of 17.0 g/l with the ethanol yield (0.33 g/g) and fermentation efficiency (64 %) from medium supplemented with RBE. On the other hand, S. arborariae presented 5.4 g/l of ethanol production with ethanol yield (0.14 g/g) and fermentation efficiency (21 %) in a fermentation medium supplemented with RBE. Appropriate media formulation is an important parameter to increase the productivity of bioconversion process and RBE proved to be an efficient and inexpensive nitrogen source to supplement sugarcane bagasse hemicellulosic hydrolysate for second generation ethanol production. © 2013 Society for Sugar Research & Promotion.
Resumo:
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates. © 2013 John Wiley & Sons Ltd.
Resumo:
The leaf spot (Mycosphaerella leaf disease = MLD) caused by Teratosphaeria nubilosa has caused damage in eucalypt plantations in southern and southeastern Brazil. The need to assess the disease in the field to evaluate of this damage, efficiency control, evaluation of germplasm induces to the necessity of having a visual scale for evaluation of disease. The objective was to develop a diagrammatic scale for young leaves and one for adult leaves of Eucalyptus globules for MLD. To do so, the leaves collected in the field were scanned for image analysis. The damaged area, the healthy leaf area and the external area of the same scale RGB (Red, Green, Blue) were determined. Subsequently, it was determinate the levels of severity depending on the sample distribution with seven levels for young leaves and six for adult leaves. For the visual acuity test and validate the scale, the leaves were evaluated for severity, with and without scale. With this proposed scales, the assessors showed good accuracy both for young and adult leaves with R2=0,98 and R2=0,80, respectively. The importance of the development of diagrammatic scales for assessing MLD in eucalyptus must to the fact that allows quantification of the symptoms accurately and precisely.
Resumo:
Aims: The effects of fire ensure that large areas of the seasonal tropics are maintained as savannas. The advance of forests into these areas depends on shifts in species composition and the presence of sufficient nutrients. Predicting such transitions, however, is difficult due to a poor understanding of the nutrient stocks required for different combinations of species to resist and suppress fires. Methods: We compare the amounts of nutrients required by congeneric savanna and forest trees to reach two thresholds of establishment and maintenance: that of fire resistance, after which individual trees are large enough to survive fires, and that of fire suppression, after which the collective tree canopy is dense enough to minimize understory growth, thereby arresting the spread of fire. We further calculate the arboreal and soil nutrient stocks of savannas, to determine if these are sufficient to support the expansion of forests following initial establishment. Results: Forest species require a larger nutrient supply to resist fires than savanna species, which are better able to reach a fire-resistant size under nutrient limitation. However, forest species require a lower nutrient supply to attain closed canopies and suppress fires; therefore, the ingression of forest trees into savannas facilitates the transition to forest. Savannas have sufficient N, K, and Mg, but require additional P and Ca to build high-biomass forests and allow full forest expansion following establishment. Conclusions: Tradeoffs between nutrient requirements and adaptations to fire reinforce savanna and forest as alternate stable states, explaining the long-term persistence of vegetation mosaics in the seasonal tropics. Low-fertility limits the advance of forests into savannas, but the ingression of forest species favors the formation of non-flammable states, increasing fertility and promoting forest expansion. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
The introduction of nitrogen fixing species (NFS) in fast-growing tree plantations is an alternative option to reduce fertilizer inputs. However, the success of mixed-species plantations depends on the balance between positive interactions among species (resulting from facilitation and/or complementarity) and the negative effects of interspecific competition.Using a carbon budget approach and coupling measurements of standing biomass, aboveground litterfall and soil CO2 efflux, we assessed the influence of replacing half of eucalypt trees by Acacia mangium on total belowground carbon flux (TBCF), net primary production (NPP) and its partitioning between above- and belowground growth at two tropical sites in Brazil (Itatinga) and in Congo (Kissoko) exhibiting contrasting climates, edaphic conditions and wood productions.Annual soil CO2 efflux (FS) was significantly lower in the acacia monocultures than in eucalypt monocultures and mixed-species stands at both sites. Annual FS was significantly lower at Itatinga compared to Kissoko for all stands while TBCF was significantly lower in the eucalypt stands only. In the eucalypt monocultures we found a significantly lower aboveground NPP (ANPP) and wood production (wood NPP) at Kissoko compared to Itatinga that was almost fully balanced by a significantly higher belowground NPP (BNPP), leading to similar NPP. Similarly, acacia monocultures exhibited significantly higher ANPP and wood NPP at Itatinga than at Kissoko. The mixed-species stands exhibited a significantly lower wood NPP and ANPP than the eucalypt monocultures at the Brazilian site while NPP of the mixture was not significantly different than the average NPP of the two monocultures. At the Congolese site, NPP of the mixture was significantly higher than the average NPP of the two monocultures. NPP was similar in the mixed-species stand and the eucalypt monoculture with a significantly lower partitioning of NPP to belowground production, leading to a one third higher wood biomass at harvest in the mixed-species stand.A positive effect of growing eucalypts with the nitrogen fixing acacia trees on stand wood production occurred at Kissoko but not at Itatinga. Mixed-species plantations with NFS can be advocated at sites where the productive gains resulting from nitrogen fixation are not compromised by other resource limitations. © 2012 Elsevier B.V.
Resumo:
Among the most important diseases affecting Eucalyptus is Mycosphaerella Leaf Disease (MLD) caused by Mycosphaerella spp. and Teratosphaeria spp. MLD has led to significant losses in eucalypt plantations in the South and Southeast Region of Brazil, as well as in several countries such as Portugal, Spain, South Africa and Australia. Symptoms of MLD include localized necrotic spots, early defoliation in juvenile plants, stem cankers, early death of branches, and in some cases, atrophy and death. In the present study, single spore isolations from leaves of E. globulus from five locations in Brazil allowed the differentiation of species of Mycosphaerella and Teratosphaeria based on ascospore germination and growth in culture. These isolates were also subjected to sequence analysis of the ribosomal RNA internal transcribed spacer regions, which allowed their identification to species level. The results of this study showed that six species of Mycosphaerella and four species of Teratosphaeria were associated with leaves showing symptoms of MLD in E. globulus plantations in various locations of Brazil. © 2013 KNPV.
Resumo:
In Brazil, Eucalyptus grandis is a key species for wood production. However, some genotypes are susceptible to rust (Puccinia psidii), mainly in São Paulo State, where climatic conditions are favorable for its development. Rust represents a high economic risk to forest companies because of the high potential of damage to commercial eucalypt plantations. The aims of the present study were (i) to select progenies of E. grandis for stability and adaptability regarding resistance to rust at different locations; (ii) compare the selections under these different climatic conditions; and (iii) compare rust severity in the field with the theoretical model. We observed that climatic conditions were extremely influential factors for rust development, but even under favorable conditions for disease development, we found rust-resistant progenies. In sites unfavorable for rust development, we detected highly susceptible progenies. We found significant correlation among the genetic material, environmental conditions and disease symptoms, however, we observed a simple genotype-environmental interaction and significant genetic variability among the progenies. The average heritability was high among the progenies in all sites, indicating substantial genetic control for rust resistance. We also observed a good relationship between rust severity in the field and the theoretical model that considered annual average temperature and leaf wetness. © 2013 Elsevier B.V.
Resumo:
Background and Aims: Recent studies showed a positive tree response to Na addition in K-depleted tropical soils. Our study aimed to gain insight into the effects of K and Na fertilizations on leaf area components for a widely planted tree species. Methods: Leaf expansion rates, as well as nutrient, polyol and soluble sugar concentrations, were measured from emergence to abscission of tagged leaves in 1-year-old Eucalyptus grandis plantations. Leaf cell size and water status parameters were compared 1 and 2 months after leaf emergence in plots with KCl application (+K), NaCl application (+Na) and control plots (C). Results: K and Na applications enhanced tree leaf area by increasing both leaf longevity and the mean area of individual leaves. Higher cell turgor in treatments +K and +Na than in the C treatment resulting from higher concentrations of osmotica contributed to increasing both palisade cell diameters and the size of fully expanded leaves. Conclusions: Intermediate total tree leaf area in treatment +Na compared to treatments C and +K might result from the capacity of Na to substitute K in osmoregulatory functions, whereas it seemed unable to accomplish other important K functions that contribute to delaying leaf senescence. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)