968 resultados para Environmental application
Resumo:
There is little consensus on how agriculture will meet future food demands sustainably. Soils and their biota play a crucial role by mediating ecosystem services that support agricultural productivity. However, a multitude of site-specific environmental factors and management practices interact to affect the ability of soil biota to perform vital functions, confounding the interpretation of results from experimental approaches. Insights can be gained through models, which integrate the physiological, biological and ecological mechanisms underpinning soil functions. We present a powerful modelling approach for predicting how agricultural management practices (pesticide applications and tillage) affect soil functioning through earthworm populations. By combining energy budgets and individual-based simulation models, and integrating key behavioural and ecological drivers, we accurately predict population responses to pesticide applications in different climatic conditions. We use the model to analyse the ecological consequences of different weed management practices. Our results demonstrate that an important link between agricultural management (herbicide applications and zero, reduced and conventional tillage) and earthworms is the maintenance of soil organic matter (SOM). We show how zero and reduced tillage practices can increase crop yields while preserving natural ecosystem functions. This demonstrates how management practices which aim to sustain agricultural productivity should account for their effects on earthworm populations, as their proliferation stimulates agricultural productivity. Synthesis and applications. Our results indicate that conventional tillage practices have longer term effects on soil biota than pesticide control, if the pesticide has a short dissipation time. The risk of earthworm populations becoming exposed to toxic pesticides will be reduced under dry soil conditions. Similarly, an increase in soil organic matter could increase the recovery rate of earthworm populations. However, effects are not necessarily additive and the impact of different management practices on earthworms depends on their timing and the prevailing environmental conditions. Our model can be used to determine which combinations of crop management practices and climatic conditions pose least overall risk to earthworm populations. Linking our model mechanistically to crop yield models would aid the optimization of crop management systems by exploring the trade-off between different ecosystem services.
Resumo:
1. Agri-environment schemes remain a controversial approach to reversing biodiversity losses, partly because the drivers of variation in outcomes are poorly understood. In particular, there is a lack of studies that consider both social and ecological factors. 2. We analysed variation across 48 farms in the quality and biodiversity outcomes of agri-environmental habitats designed to provide pollen and nectar for bumblebees and butterflies or winter seed for birds. We used interviews and ecological surveys to gather data on farmer experience and understanding of agri-environment schemes, and local and landscape environmental factors. 3. Multimodel inference indicated social factors had a strong impact on outcomes and that farmer experiential learning was a key process. The quality of the created habitat was affected positively by the farmer’s previous experience in environmental management. The farmer’s confidence in their ability to carry out the required management was negatively related to the provision of floral resources. Farmers with more wildlife-friendly motivations tended to produce more floral resources, but fewer seed resources. 4. Bird, bumblebee and butterfly biodiversity responses were strongly affected by the quantity of seed or floral resources. Shelter enhanced biodiversity directly, increased floral resources and decreased seed yield. Seasonal weather patterns had large effects on both measures. Surprisingly, larger species pools and amounts of semi-natural habitat in the surrounding landscape had negative effects on biodiversity, which may indicate use by fauna of alternative foraging resources. 5. Synthesis and application. This is the first study to show a direct role of farmer social variables on the success of agri-environment schemes in supporting farmland biodiversity. It suggests that farmers are not simply implementing agri-environment options, but are learning and improving outcomes by doing so. Better engagement with farmers and working with farmers who have a history of environmental management may therefore enhance success. The importance of a number of environmental factors may explain why agri-environment outcomes are variable, and suggests some – such as the weather – cannot be controlled. Others, such as shelter, could be incorporated into agri-environment prescriptions. The role of landscape factors remains complex and currently eludes simple conclusions about large-scale targeting of schemes.
Resumo:
Abstract: A new methodology was created to measure the energy consumption and related green house gas (GHG) emissions of a computer operating system (OS) across different device platforms. The methodology involved the direct power measurement of devices under different activity states. In order to include all aspects of an OS, the methodology included measurements in various OS modes, whilst uniquely, also incorporating measurements when running an array of defined software activities, so as to include OS application management features. The methodology was demonstrated on a laptop and phone that could each run multiple OSs, results confirmed that OS can significantly impact the energy consumption of devices. In particular, the new versions of the Microsoft Windows OS were tested and highlighted significant differences between the OS versions on the same hardware. The developed methodology could enable a greater awareness of energy consumption, during both the software development and software marketing processes.
Resumo:
Research into the use of biochar for the remediation of contaminated soils has expanded rapidly over the past 5 yr. We review recent developments in the field and present the findings emanating from small-scale batch sorption experiments, through soil incubations and bioassays, to large-scale field experiments. We discuss the evidence that these experiments have contributed toward a mechanistic understanding of how biochar is capable of remediating soils contaminated with both organic and inorganic contaminants. The effects of biochar pyrolysis temperature, biochar source material, soil type, and contaminant type on the performance of biochars for remediation are identified. The risks associated with applying biochar to uncontaminated agricultural soils are discussed. Knowledge gaps and questions are identified which, if addressed, will considerably advance the application of biochar as a soil remediation tool in the future.
Resumo:
An enhanced radiocarbon-dated pollen-stratigraphical record from Rovegno (Liguria, 812m asl), northern Apennines (Italy), has provided a history of vegetation succession from before 17,056-16,621 cal yrs BP to the present day. The record indicates the transition from open Pinus woodland to Artemisia dominated grassland, and finally Juniperus shrubland during the late Würm. This is succeeded by Betula and Pinus woodland, and the expansion of thermophilous taxa, namely Abies, Corylus and Quercus during the Late Würm Lateglacial Interstadial. The ‘Younger Dryas’ is possibly represented by an increase in Betula and Artemisia. During the early Holocene, mixed coniferous-deciduous woodland is dominant with Quercus, as well as Abies, Fagus and Corylus. Fagus woodland becomes established sometime before 6488-6318 cal yrs BP, but never becomes a major component of the woodland cover. Throughout the middle Holocene, Abies woodland fl uctuates, with marked declines between 6488-6318 cal yrs BP and 5287-4835 cal yrs BP, although the cause remains uncertain. Finally, the paper evaluates the application of non-pollen palynomorphs, especially coprophilous fungal spores, at Prato Spilla ‘A’ (Emilia Romagna) and concludes that greater caution must be used when interpreting middle Holocene human activity based upon pollen data alone
Resumo:
We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multidecadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 �C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 1 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ~2 �C at 1832 ± 15 yr AD could be related to the 1809 АD ‘unknown’ and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The paleoclimatic evidence derived from the M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death likely caused major changes in agricultural activity in the north Aegean region, as reflected in the pollen data from land sites of Macedonia and the M2 proxy-reconstructions. Finally, we conclude that the early modern peaks in mountain vegetation in the Rhodope and Macedonia highlands, visible also in the M2 record, were very likely climate-driven.
Resumo:
In this paper we present a hierarchical Bayesian analysis for a predator-prey model applied to ecology considering the use of Markov Chain Monte Carlo methods. We consider the introduction of a random effect in the model and the presence of a covariate vector. An application to ecology is considered using a data set related to the plankton dynamics of lake Geneva for the year 1990. We also discuss some aspects of discrimination of the proposed models.
Resumo:
This paper considers an extension to the skew-normal model through the inclusion of an additional parameter which can lead to both uni- and bi-modal distributions. The paper presents various basic properties of this family of distributions and provides a stochastic representation which is useful for obtaining theoretical properties and to simulate from the distribution. Moreover, the singularity of the Fisher information matrix is investigated and maximum likelihood estimation for a random sample with no covariates is considered. The main motivation is thus to avoid using mixtures in fitting bimodal data as these are well known to be complicated to deal with, particularly because of identifiability problems. Data-based illustrations show that such model can be useful. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This paper is concerned with the cost efficiency in achieving the Swedish national air quality objectives under uncertainty. To realize an ecologically sustainable society, the parliament has approved a set of interim and long-term pollution reduction targets. However, there are considerable quantification uncertainties on the effectiveness of the proposed pollution reduction measures. In this paper, we develop a multivariate stochastic control framework to deal with the cost efficiency problem with multiple pollutants. Based on the cost and technological data collected by several national authorities, we explore the implications of alternative probabilistic constraints. It is found that a composite probabilistic constraint induces considerably lower abatement cost than separable probabilistic restrictions. The trend is reinforced by the presence of positive correlations between reductions in the multiple pollutants.
Resumo:
Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.
Resumo:
Aim: The aim of this study was to explore nurses' perceptions of climate and environmental issues and examine how nurses perceive their role in contributing to the process of sustainable development. Background: Climate change and its implications for human health represent an increasingly important issue for the healthcare sector. According to the International Council of Nurses Code of Ethics, nurses have a responsibility to be involved and support climate change mitigation and adaptation to protect human health. Design: This is a descriptive, explorative qualitative study. Methods: Nurses (n=18) were recruited from hospitals, primary care and emergency medical services; eight participated in semi-structured, in-depth individual interviews and 10 participated in two focus groups. Data were collected from April-October 2013 in Sweden; interviews were transcribed verbatim and analysed using content analysis. Results: Two main themes were identified from the interviews: (i) an incongruence between climate and environmental issues and nurses' daily work; and (ii) public health work is regarded as a health co-benefit of climate change mitigation. While being green is not the primary task in a lifesaving, hectic and economically challenging context, nurses' perceived their profession as entailing responsibility, opportunities and a sense of individual commitment to influence the environment in a positive direction. Conclusions: This study argues there is a need for increased awareness of issues and methods that are crucial for the healthcare sector to respond to climate change. Efforts to develop interventions should explore how nurses should be able to contribute to the healthcare sector's preparedness for and contributions to sustainable development.
Resumo:
The current development of tourism is environmentally unsustainable. Specifically, tourism’s contribution to climate change is increasing while other sectors are reducing their greenhouse gas emissions. This paper has two goals: reveal the main structural cause for tourism’s emission growth and show the consequences thereof for (mitigation) policies. It is reasoned that the main cause for tourism’s strong emission growth is the time-space expansion of global tourism behavior. Contemporary tourism theory and geography fail to clearly describe this geographical development, making it difficult to understand this expansion and develop effective policies to mitigate environmental impacts. Therefore, this paper explores some elements of a ‘new tourism geography’ and shows how this may help to better understand the causes of the environmentally unsustainable development of tourism with respect to climate change and devise mitigation policies.
Resumo:
Previous to 1970, state and federal agencies held exclusive enforcement responsibilities over the violation of pollution control standards. However, recognizing that the government had neither the time nor resources to provide full enforcement, Congress created citizen suits. Citizen suits, first amended to the Clean Air Act in 1970, authorize citizens to act as private attorney generals and to sue polluters for violating the terms of their operating permits. Since that time, Congress has included citizen suits in 13 other federal statutes. The citizen suit phenomenon is sufficiently new that little is known about it. However, we do know that citizen suits have increased rapidly since the early 1980's. Between 1982 and 1986 the number of citizen suits jumped from 41 to 266. Obviously, they are becoming a widely used method of enforcing the environmental statutes. This paper will provide a detailed description, analysis and evaluation of citizen suits. It will begin with an introduction and will then move on to provide some historic and descriptive background on such issues as how citizen suit powers are delegated, what limitations are placed on the citizens, what parties are on each side of the suit, what citizens can enforce against, and the types of remedies available. The following section of the paper will provide an economic analysis of citizen suits. It will begin with a discussion of non-profit organizations, especially non-profit environmental organizations, detailing the economic factors which instigate their creation and activities. Three models will be developed to investigate the evolution and effects of citizen suits. The first model will provide an analysis of the demand for citizen suits from the point of view of a potential litigator showing how varying remedies, limitations and reimbursement procedures can effect both the level and types of activities undertaken. The second model shows how firm behavior could be expected to respond to citizen suits. Finally, a third model will look specifically at the issue of efficiency to determine whether the introduction of citizen enforcement leads to greater or lesser economic efficiency in pollution control. The database on which the analysis rests consists of 1205 cases compiled by the author. For the purposes of this project this list of citizen suit cases and their attributes were computerized and used to test a series of hypotheses derived from three original economic models. The database includes information regarding plaintiffs, defendants date notice and/or complaint was filed and statutes involved in the claim. The analysis focuses on six federal environmental statutes (Clean Water Act} Resource Conservation and Recovery Act, Comprehensive Environmental Response Compensation and Liability Act, Clean Air Act, Toxic Substances Control Act, and Safe Drinking Water Act) because the majority of citizen suits have occurred under these statutes.