855 resultados para Empirical Mode Decomposition, vibration-based analysis, damage detection, signal decomposition
Resumo:
This article combines information from fathers' rights Web sites with demographic, historical, and other information to provide an empirically based analysis of fathers' rights advocacy in the United States. Content analysis discerns three factors that are central to the groups' rhetoric: representing domestic violence allegations as false, promoting presumptive joint custody and decreasing child support, and portraying women as perpetrators of domestic abuse. Fathers' rights organizations and themes are examined in relation to state-level demographics and custody policy. The implications of fathers' rights activism for battered women and their children are explored.
Resumo:
To ensure the small-signal stability of a power system, power system stabilizers (PSSs) are extensively applied for damping low frequency power oscillations through modulating the excitation supplied to synchronous machines, and increasing interest has been focused on developing different PSS schemes to tackle the threat of damping oscillations to power system stability. This paper examines four different PSS models and investigates their performances on damping power system dynamics using both small-signal eigenvalue analysis and large-signal dynamic simulations. The four kinds of PSSs examined include the Conventional PSS (CPSS), Single Neuron based PSS (SNPSS), Adaptive PSS (APSS) and Multi-band PSS (MBPSS). A steep descent parameter optimization algorithm is employed to seek the optimal PSS design parameters. To evaluate the effects of these PSSs on improving power system dynamic behaviors, case studies are carried out on an 8-unit 24-bus power system through both small-signal eigenvalue analysis and large-signal time-domain simulations.
Resumo:
Wandering is aimless and repetitive locomotion that may expose persons with dementia (PWD) to elopement, getting lost and death. This study is an Australian replication of a US study. Cross-disciplinary consensus- based analysis was applied to data from five focus groups (N =47: cognitively intact LTC residents (5), carers of PWD (11), home care workers (13) allied health professionals and health-focused engineers (7) and RNs (11). Groups received briefing about wandering monitoring and elopement management systems. Consistent with US attitudes, participants in all groups agreed on what a wandering technology should do, how it should do it, and necessary technical specifications. Within each group participants raised the need for a continuum of care for PWD and the imperative for early recognition of potentially dangerous wandering and getting lost when they occur. Global Positioning System elopement management was the preferred option. Interestingly, the prospective value of GPS to recover a lost or eloped wanderer far outweighed privacy concerns, as in the US. A pervasive theme was that technologies need to augment, but cannot replace, attentive, compassionate caregiver presence. A significant theme raised only by Australian carers of PWD was the potential for development of implantable GPS technologies and the need for public debate about attendant ethical issues. Given that 60% or more of over 200,000 Australians and 4.5 million Americans with dementia will develop wandering, there is a pressing need to develop effective locator systems that may delay institutionalization, help allay carer concern and enhance PWD safety.
Resumo:
Knowledge has been widely recognised as a determinant of business performance. Business capabilities require an effective share of resource and knowledge. Specifically, knowledge sharing (KS) between different companies and departments can improve manufacturing processes since intangible knowledge plays an enssential role in achieving competitive advantage. This paper presents a mixed method research study into the impact of KS on the effectiveness of new product development (NPD) in achieving desired business performance (BP). Firstly, an empirical study utilising moderated regression analysis was conducted to test whether and to what extent KS has leveraging power on the relationship between NPD and BP constructs and variables. Secondly, this empirically verified hypothesis was validated through explanatory case studies involving two Taiwanese manufacturing companies using a qualitative interaction term pattern matching technique. The study provides evidence that knowledge sharing and management activities are essential for deriving competitive advantage in the manufacturing industry.
Resumo:
Acoustic sensing is a promising approach to scaling faunal biodiversity monitoring. Scaling the analysis of audio collected by acoustic sensors is a big data problem. Standard approaches for dealing with big acoustic data include automated recognition and crowd based analysis. Automatic methods are fast at processing but hard to rigorously design, whilst manual methods are accurate but slow at processing. In particular, manual methods of acoustic data analysis are constrained by a 1:1 time relationship between the data and its analysts. This constraint is the inherent need to listen to the audio data. This paper demonstrates how the efficiency of crowd sourced sound analysis can be increased by an order of magnitude through the visual inspection of audio visualized as spectrograms. Experimental data suggests that an analysis speedup of 12× is obtainable for suitable types of acoustic analysis, given that only spectrograms are shown.
Resumo:
Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.
Resumo:
Autonomous navigation and locomotion of a mobile robot in natural environments remain a rather open issue. Several functionalities are required to complete the usual perception/decision/action cycle. They can be divided in two main categories : navigation (perception and decision about the movement) and locomotion (movement execution). In order to be able to face the large range of possible situations in natural environments, it is essential to make use of various kinds of complementary functionalities, defining various navigation and locomotion modes. Indeed, a number of navigation and locomotion approaches have been proposed in the literature for the last years, but none can pretend being able to achieve autonomous navigation and locomotion in every situation. Thus, it seems relevant to endow an outdoor mobile robot with several complementary navigation and locomotion modes. Accordingly, the robot must also have means to select the most appropriate mode to apply. This thesis proposes the development of such a navigation/locomotion mode selection system, based on two types of data: an observation of the context to determine in what kind of situation the robot has to achieve its movement and an evaluation of the behavior of the current mode, made by monitors which influence the transitions towards other modes when the behavior of the current one is considered as non satisfying. Hence, this document introduces a probabilistic framework for the estimation of the mode to be applied, some navigation and locomotion modes used, a qualitative terrain representation method (based on the evaluation of a difficulty computed from the placement of the robot's structure on a digital elevation map), and monitors that check the behavior of the modes used (evaluation of rolling locomotion efficiency, robot's attitude and configuration watching. . .). Some experimental results obtained with those elements integrated on board two different outdoor robots are presented and discussed.
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.
Resumo:
Digital forensics concerns the analysis of electronic artifacts to reconstruct events such as cyber crimes. This research produced a framework to support forensic analyses by identifying associations in digital evidence using metadata. It showed that metadata based associations can help uncover the inherent relationships between heterogeneous digital artifacts thereby aiding reconstruction of past events by identifying artifact dependencies and time sequencing. It also showed that metadata association based analysis is amenable to automation by virtue of the ubiquitous nature of metadata across forensic disk images, files, system and application logs and network packet captures. The results prove that metadata based associations can be used to extract meaningful relationships between digital artifacts, thus potentially benefiting real-life forensics investigations.
Resumo:
Novel computer vision techniques have been developed to automatically detect unusual events in crowded scenes from video feeds of surveillance cameras. The research is useful in the design of the next generation intelligent video surveillance systems. Two major contributions are the construction of a novel machine learning model for multiple instance learning through compressive sensing, and the design of novel feature descriptors in the compressed video domain.
Resumo:
Self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was prepared on indium tin oxide (ITO) electrode by spontaneous adsorption from dimethylformamide (DMF) solution containing 4α-CoIITAPc. The SAM of 4α-CoIITAPc formed on ITO electrode was characterized by cyclic voltammetry, Raman and UV–visible spectroscopic techniques. The cyclic voltammogram (CV) of 4α-CoIITAPc SAM shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) was calculated by integrating the charge under the anodic wave corresponding to CoII oxidation and it was found to be 2.25 × 10−10 mol cm−2. Raman spectrum obtained for the SAM of 4α-CoIITAPc on ITO surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Further, the –NH2 bending mode of vibration was absent for the SAM of 4α-CoIITAPc on ITO surface which indirectly confirmed that all the amino groups of 4α-CoIITAPc are involved in bonding with ITO surface. UV–visible spectrum for the SAM of 4α-CoIITAPc on ITO surface shows an intense B-band, Q-band and n–π∗ transition with slight broadening when compared to that of 4α-CoIITAPc in DMF.
Resumo:
The echolocation calls of long-tailed bats (Chalinolobus tuberculatus) were recorded in the Eglinton Valley, Fjordland, New Zealand, and digitized for analysis with the signal-processing software. Univariate and multivariate analyses of measure features facilitated a quantitative classification of the calls. Cluster analysis was used to categorize calls into two groups equating to search and terminal buzz calls described qualitatively for other species. When moving from search to terminal phases, the calls decrease in bandwidth, maximum and minimum frequency of call, and duration. Search calls begin with a steep-downward FM sweep followed by a short, less-modulated component. Buzz calls are FM sweeps. Although not found quantitatively, a broad pre-buzz group of calls also was identified. Ambiguity analysis of calls from the three groups shows that search-phrase calls are well suited to resolving the velocity of targets, and hence, identifying moving targets in a stationary clutter. Pre-buzz and buzz calls are better suited to resolving range, a feature that may aid the bats in capture of evasive prey after it has been identified.
Resumo:
Safety is one of the major world health issues, and is even more acute for “vulnerable” road users, pedestrians and cyclists. At the same time, public authorities are promoting the active modes of transportation that involve these very users for their health benefits. It is therefore important to understand the factors and designs that provide the best safety for vulnerable road users and encourage more people to use these modes. Qualitative and quantitative shortcomings of collisions make it necessary to use surrogate measures of safety in studying these modes. Some interactions without a collision such as conflicts can be good surrogates of collisions as they are more frequent and less costly. To overcome subjectivity and reliability challenges, automatic conflict analysis using video cameras and deriving users’ trajectories is a solution to overcome shortcomings of manual conflict analysis. The goal of this paper is to identify and characterize various interactions between cyclists and pedestrians at bus stops along bike paths using a fully automated process. Three conflict severity indicators are calculated and adapted to the situation of interest to capture those interactions. A microscopic analysis of users’ behavior is proposed to explain interactions more precisely. Eventually, the study aims to show the capability of automatically collecting and analyzing data for pedestrian-cyclist interactions at bus stops along segregated bike paths in order to better understand the actual and perceived risks of these facilities.
Resumo:
The characterisation of facial expression through landmark-based analysis methods such as FACEM (Pilowsky & Katsikitis, 1994) has a variety of uses in psychiatric and psychological research. In these systems, important structural relationships are extracted from images of facial expressions by the analysis of a pre-defined set of feature points. These relationship measures may then be used, for instance, to assess the degree of variability and similarity between different facial expressions of emotion. FaceXpress is a multimedia software suite that provides a generalised workbench for landmark-based facial emotion analysis and stimulus manipulation. It is a flexible tool that is designed to be specialised at runtime by the user. While FaceXpress has been used to implement the FACEM process, it can also be configured to support any other similar, arbitrary system for quantifying human facial emotion. FaceXpress also implements an integrated set of image processing tools and specialised tools for facial expression stimulus production including facial morphing routines and the generation of expression-representative line drawings from photographs.