867 resultados para Embedded devices
Resumo:
The goals of this project are to develop a Reactive Air Brazing (RAB) alloy and process for joining Barium strontium cobalt ferrite (BSCF), and to develop a fundamental understanding of the wettability and microstructral development due to reaction kinetics in BSCF/Ag-MexOy systems.
Resumo:
The widespread of low cost embedded electronics makes it easier to implement the smart devices that can understand either the environment or the user behaviors. The main object of this project is to design and implement home use portable smart electronics, including the portable monitoring device for home and office security and the portable 3D mouse for convenient use. Both devices in this project use the MPU6050 which contains a 3 axis accelerometer and a 3 axis gyroscope to sense the inertial motion of the door or the human hands movement. For the portable monitoring device for home and office security, MPU6050 is used to sense the door (either home front door or cabinet door) movement through the gyroscope, and Raspberry Pi is then used to process the data it receives from MPU6050, if the data value exceeds the preset threshold, Raspberry Pi would control the USB Webcam to take a picture and then send out an alert email with the picture to the user. The advantage of this device is that it is a small size portable stand-alone device with its own power source, it is easy to implement, really cheap for residential use, and energy efficient with instantaneous alert. For the 3D mouse, the MPU6050 would use both the accelerometer and gyroscope to sense user hands movement, the data are processed by MSP430G2553 through a digital smooth filter and a complementary filter, and then the filtered data will pass to the personal computer through the serial COM port. By applying the cursor movement equation in the PC driver, this device can work great as a mouse with acceptable accuracy. Compared to the normal optical mouse we are using, this mouse does not need any working surface, with the use of the smooth and complementary filter, it has certain accuracy for normal use, and it is easy to be extended to a portable mouse as small as a finger ring.
Resumo:
The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.
Resumo:
Recent advances in high temperature electrochemical devices have prompted research into potential materials for component fabrication.
Resumo:
Left ventricular assist devices were developed to support the function of a failing left ventricle. Owing to recent technological improvements, ventricular assist devices can be placed by percutaneous implantation techniques, which offer the advantage of fast implantation in the setting of acute left ventricular failure. This article reviews the growing evidence supporting the clinical use of left ventricular assist devices. Specifically, we discuss the use of left ventricular assist devices in patients with cardiogenic shock, in patients with acute ST-elevation myocardial infarction without shock, and during high-risk percutaneous coronary interventions.
Resumo:
AIM: The purpose of this study was to systematically review the literature on the survival rates of palatal implants, Onplants((R)), miniplates and mini screws. MATERIAL AND METHODS: An electronic MEDLINE search supplemented by manual searching was conducted to identify randomized clinical trials, prospective and retrospective cohort studies on palatal implants, Onplants((R)), miniplates and miniscrews with a mean follow-up time of at least 12 weeks and of at least 10 units per modality having been examined clinically at a follow-up visit. Assessment of studies and data abstraction was performed independently by two reviewers. Reported failures of used devices were analyzed using random-effects Poisson regression models to obtain summary estimates and 95% confidence intervals (CI) of failure and survival proportions. RESULTS: The search up to January 2009 provided 390 titles and 71 abstracts with full-text analysis of 34 articles, yielding 27 studies that met the inclusion criteria. In meta-analysis, the failure rate for Onplants((R)) was 17.2% (95% CI: 5.9-35.8%), 10.5% for palatal implants (95% CI: 6.1-18.1%), 16.4% for miniscrews (95% CI: 13.4-20.1%) and 7.3% for miniplates (95% CI: 5.4-9.9%). Miniplates and palatal implants, representing torque-resisting temporary anchorage devices (TADs), when grouped together, showed a 1.92-fold (95% CI: 1.06-2.78) lower clinical failure rate than miniscrews. CONCLUSION: Based on the available evidence in the literature, palatal implants and miniplates showed comparable survival rates of >or=90% over a period of at least 12 weeks, and yielded superior survival than miniscrews. Palatal implants and miniplates for temporary anchorage provide reliable absolute orthodontic anchorage. If the intended orthodontic treatment would require multiple miniscrew placement to provide adequate anchorage, the reliability of such systems is questionable. For patients who are undergoing extensive orthodontic treatment, force vectors may need to be varied or the roots of the teeth to be moved may need to slide past the anchors. In this context, palatal implants or miniplates should be the TADs of choice.
Resumo:
OBJECTIVE: The aim of this study was to determine the influence of polyvinyl chloride (PVC) wrapping on the performance of two laser fluorescence devices (LF and LFpen) by assessing tooth occlusal surfaces. BACKGROUND DATA: Protection of their tips may influence LF measurements. To date there are no studies evaluating the influence of this protection on the performance of the LFpen on permanent teeth, or comparing it to the original LF device. MATERIALS AND METHODS: One hundred nineteen permanent molars were assessed by two experienced dentists using the LF and the LFpen devices, both with and without PVC wrapping. The teeth were histologically prepared and assessed for caries extension. RESULTS: The LF values with and without PVC wrapping were significantly different. For both LF devices, the sensitivity and accuracy were lower when the PVC wrapping was used. The specificity was statistically significantly higher for the LFpen with PVC. No difference was found between the areas under the ROC curves with and without PVC wrapping. The ICC showed excellent interexaminer agreement. The Bland and Altman method showed a range between the upper and the lower limits of agreement of 63.4 and 57.8 units for the LF device, and 49.4 and 74.2 for the LFpen device, with and without PVC wrapping, respectively. CONCLUSIONS: We found an influence of the PVC wrapping on the performance of the LF and LFpen devices. However, since its influence on detection of occlusal caries lesions is considered for, the use of one PVC layer is suggested to avoid cross-contamination in clinical practice.
Resumo:
Future generations of mobile communication devices will serve more and more as multimedia platforms capable of reproducing high quality audio. In order to achieve a 3-D sound perception the reproduction quality of audio via headphones can be significantly increased by applying binaural technology. To be independent of individual head-related transfer functions (HRTFs) and to guarantee a good performance for all listeners, an adaptation of the synthesized sound field to the listener's head movements is required. In this article several methods of head-tracking for mobile communication devices are presented and compared. A system for testing the identified methods is set up and experiments are performed to evaluate the prosand cons of each method. The implementation of such a device in a 3-D audio system is described and applications making use of such a system are identified and discussed.
Resumo:
This article describes a series of experiments which were carried out to measure the sense of presence in auditory virtual environments. Within the study a comparison of self-created signals to signals created by the surrounding environment is drawn. Furthermore, it is investigated if the room characteristics of the simulated environment have consequences on the perception of presence during vocalization or when listening to speech. Finally the experiments give information about the influence of background signals on the sense of presence. In the experiments subjects rated the degree of perceived presence in an auditory virtual environment on a perceptual scale. It is described which parameters have the most influence on the perception of presence and which ones are of minor influence. The results show that on the one hand an external speaker has more influence on the sense of presence than an adequate presentation of one’s own voice. On the other hand both room reflections and adequately presented background signals significantly increase the perceived presence in the virtual environment.