859 resultados para Electronic mail systems Political aspects Indonesia
Resumo:
Novel superconducting thallium cuprates of the type T1Ca1‐X LnX Sr2 Cu2O6+δ (Ln = Y or rare earth), T1Srn+1‐x Lnx Cun OY and Tl1‐x PbX Srn+1Cun08+δ are described. These cuprates as well as Bi2Ca1‐x Lnx Sr2Cu2O8+δ and TICa1‐xYxBa2 Cu2 O6+δ . show maximum T around a specific composition or oxygen content. They also show interesting changes in the sign and magnitude of the thermopower with the composition. Specially noteworthy is the negative slope of the thermopower‐temperature plots. The thermopower behaviour in these two‐band systems can be understood in terms of entropie and quasiparticle contributions. It appears that Tl1‐x Pbx CaSr2Cu2O6+δ is a genuine high T electron superconductor.
Resumo:
Systems biology seeks to study biological systems as a whole, by adopting an integrated approach to study and understand the function of biological systems, particularly, the response of such systems to various perturbations. In this article, we focus on the Indian efforts towards systems-level studies of Mycobacterium tuberculosis and its interaction with the host. Availability of a variety of genome-scale experimental data, providing first level `omics' descriptions of the pathogen, render it feasible to study it at a systems level. Various aspects of the pathogen, from metabolic pathways to protein-protein interaction networks have been modelled and simulated, while host-pathogen interactions have been studied experimentally using siRNA-based techniques. These studies have been useful in obtaining a global perspective of the pathogen and its interactions with the host in many ways. For example, significant insights have been gained about different aspects such as proteins essential for bacterial survival, proteins that are highly influential in the network, pathways that are highly connected, host factors responsible for maintaining the TB infection and key factors involved in autophagy and pathogenesis. A rational pipeline developed for drug target identification incorporating analyses of the interactome, reactome, genome, pocketome and the transcriptome is discussed. Finally, exploring host factors as drug targets and insights about the emergence of drug resistance are also discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
From electromotive force (emf) measurements using solid oxide galvanic cells incorporating ZrOz-CaO and ThOz-YO~.s electrolytes, the chemical potentials of oxygen over the systems Fe + FeCrzO 4 + Cr20 ~ and Fe + FeV204 + V203 were calculated. The values may be represented by the equations: 2Fe(s, I) + Oz(g) + 2Cr2Oa(s) -- 2FeCr204 (s)Akto2 = - 151,400 + 34.7T (• cal= -633,400 + 145.5T(• J (750 to 1536~ A~tO2 = -158,000 + 38.4T(• cal= -661,000 + 160.5T(*1250) J (1536 to 1700~2Fe (s, I) + O2 (g) + 2V203 (s) -- 2FeV204 (s) A/~Oz = - 138,000 + 29.8T(+300) cal= - 577,500 + 124.7T (• J (750 to 1536~A/IO2 = -144,600 + 33.45T(-300) cal = -605,100 + 140.0T(~-1250) J (1536 to 1700~At the oxygen potentials corresponding to Fe + FeCrzO a + Cr203 equilibria, the electronic contribution to the conductivity of ZrO2-CaO electrolyte was found to affect the measured emf. Application of a small 60 cycle A.C. voltage with an amplitude of 50 mv across the cell terminals reduced the time required to attain equilibrium at temperatures between 750 to 9500C by approximately a factor of two. The second law entropy of iron chromite obtained in this study is in good agreement with that calculated from thermal data. The entropies of formation of these spinel phases from the component oxides can be correlated to cation distribution and crystal field theory.
Resumo:
Information forms the basis of modern technology. To meet the ever-increasing demand for information, means have to be devised for a more efficient and better-equipped technology to intelligibly process data. Advances in photonics have made their impact on each of the four key applications in information processing, i.e., acquisition, transmission, storage and processing of information. The inherent advantages of ultrahigh bandwidth, high speed and low-loss transmission has already established fiber-optics as the backbone of communication technology. However, the optics to electronics inter-conversion at the transmitter and receiver ends severely limits both the speed and bit rate of lightwave communication systems. As the trend towards still faster and higher capacity systems continues, it has become increasingly necessary to perform more and more signal-processing operations in the optical domain itself, i.e., with all-optical components and devices that possess a high bandwidth and can perform parallel processing functions to eliminate the electronic bottleneck.
Resumo:
Spectral efficiency is a key characteristic of cellular communications systems, as it quantifies how well the scarce spectrum resource is utilized. It is influenced by the scheduling algorithm as well as the signal and interference statistics, which, in turn, depend on the propagation characteristics. In this paper we derive analytical expressions for the short-term and long-term channel-averaged spectral efficiencies of the round robin, greedy Max-SINR, and proportional fair schedulers, which are popular and cover a wide range of system performance and fairness trade-offs. A unified spectral efficiency analysis is developed to highlight the differences among these schedulers. The analysis is different from previous work in the literature in the following aspects: (i) it does not assume the co-channel interferers to be identically distributed, as is typical in realistic cellular layouts, (ii) it avoids the loose spectral efficiency bounds used in the literature, which only considered the worst case and best case locations of identical co-channel interferers, (iii) it explicitly includes the effect of multi-tier interferers in the cellular layout and uses a more accurate model for handling the total co-channel interference, and (iv) it captures the impact of using small modulation constellation sizes, which are typical of cellular standards. The analytical results are verified using extensive Monte Carlo simulations.
Resumo:
One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non-Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z-component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non-Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
Photoemission spectroscopy offers the unique possibility of mapping out the electronic structure of the occupied electron states. However, the extreme surface sensitivity of this technique ensures that only the surface and the near-surface regions of any sample are probed. An important question arises in this context—Is the electronic structure of the surface region the same as that of the bulk? We address this issue using two different series of vanadium oxides, Ca1−xSrxVO3 and La1−xCaxVO3. Our results clearly establish that the electronic structure of the surface region is drastically different from that of the bulk in both these cases. We provide a method to separate the two contributions: one arising from the near-surface region and the other representative of the bulk. This separation allows us to deduce some very unusual behaviors of the electronic structures in these systems.
Resumo:
In developing countries, a high rate of growth in the demand for electric energy is felt, and so the addition of new generating units becomes inevitable. In deregulated power systems, private generating stations are encouraged to add new generations. Some of the factors considered while placing a new generating unit are: availability of esources, ease of transmitting power, distance from the load centre, etc. Finding the most appropriate locations for generation expansion can be done by running repeated power flows and carrying system studies like analyzing the voltage profile, voltage stability, loss analysis, etc. In this paper a new methodology is proposed which will mainly consider the existing network topology. A concept of T-index is introduced in this paper, which considers the electrical distances between generator and load nodes. This index is used for ranking the most significant new generation expansion locations and also indicates the amount of permissible generations that can be installed at these new locations. This concept facilitates for the medium and long term planning of power generation expansions within the available transmission corridors. Studies carried out on an EHV equivalent 10-bus system and IEEE 30 bus systems are presented for illustration purposes.
Resumo:
The demand for high power density lithium-ion batteries (LIBs) for diverse applications ranging from mobile electronics to electric vehicles have resulted in an upsurge in the development of nanostructured electrode materials worldwide. Graphite has been the anode of choice in commercial LiBs. Due to several detrimental electrochemical and environmental issues, efforts are now on to develop alternative non-carbonaceous anodes which are safe, nontoxic and cost effective and at the same time exhibit high lithium storage capacity and rate capability. Titania (TiO2) and tin (Sn) based systems have gained much attention as alternative anode materials. Nanostructuring of TiO2 and SnO2 have resulted in enhancement of structural stability and electrochemical performances. Additionally, electronic wiring of mesoporous materials using carbon also effectively enhanced electronic conductivity of mesoporous electrode materials. We discuss in this article the beneficial influence of structural spacers and electronic wiring in anatase titania (TiO2) and tin dioxide (SnO2).
Resumo:
Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4769889]
Resumo:
The implementation of semiconductor circuits and systems in nano-technology makes it possible to achieve high speed, lower voltage level and smaller area. The unintended and undesirable result of this scaling is that it makes integrated circuits susceptible to soft errors normally caused by alpha particle or neutron hits. These events of radiation strike resulting into bit upsets referred to as single event upsets(SEU), become increasingly of concern for the reliable circuit operation in the field. Storage elements are worst hit by this phenomenon. As we further scale down, there is greater interest in reliability of the circuits and systems, apart from the performance, power and area aspects. In this paper we propose an improved 12T SEU tolerant SRAM cell design. The proposed SRAM cell is economical in terms of area overhead. It is easy to fabricate as compared to earlier designs. Simulation results show that the proposed cell is highly robust, as it does not flip even for a transient pulse with 62 times the Q(crit) of a standard 6T SRAM cell.
Resumo:
Channel-aware assignment of sub-channels to users in the downlink of an OFDMA system demands extensive feedback of channel state information (CSI) to the base station. Since the feedback bandwidth is often very scarce, schemes that limit feedback are necessary. We develop a novel, low feedback splitting-based algorithm for assigning each sub-channel to its best user, i.e., the user with the highest gain for that sub-channel among all users. The key idea behind the algorithm is that, at any time, each user contends for the sub-channel on which it has the largest channel gain among the unallocated sub-channels. Unlike other existing schemes, the algorithm explicitly handles multiple access control aspects associated with the feedback of CSI. A tractable asymptotic analysis of a system with a large number of users helps design the algorithm. It yields 50% to 65% throughput gains compared to an asymptotically optimal one-bit feedback scheme, when the number of users is as small as 10 or as large as 1000. The algorithm is fast and distributed, and scales with the number of users.
Resumo:
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.