996 resultados para Electronic localization
Resumo:
We report the observation of strongly temperature (T)-dependent spectral lines in electronic Raman-scattering spectra of graphite in a high magnetic field up to 45 T applied along the c axis. The magnetic field quantizes the in-plane motion, while the out-of-plane motion remains free, effectively reducing the system dimension from 3 to 1. Optically created electron-hole pairs interact with, or shake up, the one-dimensional Fermi sea in the lowest Landau subbands. Based on the Tomonaga-Luttinger liquid theory, we show that interaction effects modify the spectral line shape from (ω-Δ)-1/2 to (ω-Δ)2α-1/2 at T = 0. At finite T, we predict a thermal broadening factor that increases linearly with T. Our model reproduces the observed T-dependent line shape, determining the electron-electron interaction parameter α to be ∼0.05 at 40 T. © 2014 American Physical Society.
Resumo:
The cDNA encoding grass carp intelectin was isolated from a head kidney cDNA library, and termed gcIntL. The deduced amino acid sequence of gcIntL consists of 318 amino acids, and about 55% identical and 74% similar to human intelectin, which is a new type of lectin recognizing galactofuranose, and plays a role in the recognition of bacteria-specific components in animal hosts. The gcIntL gene consists of seven exons and six introns, spacing over approximately 3 kb of genomic sequence. Phylogenetic analysis clearly demonstrated that the gcIntL formed a clade with Danio rerio intelectin and 35 kDa serum lectin. By real-time quantitative RT-PCR analysis, gcIntL transcripts were significantly induced in head kidney, trunk kidney, spleen, and intestine from LPS-stimulated fish. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcIntL gene have the same expression pattern, and both were detected in brain, gill, intestine, head kidney, trunk kidney, spleen, and heart. Furthermore, gcIntL protein could be detected in gill, intestine, trunk kidney, head kidney, spleen, heart, and brain including medulla oblongata and optic lobe, as determined by immunohistochemistry. This is the first report of intelectin expression pattern in fish, and of recombinant gcIntL and polyclonal antibody against gcIntL. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, to understand the roles of amorphous structures which were observed within the viromatrix of Rana grylio virus (RGV), an improved immunoelectron microscopy (IEM) method was developed to detect the localization of RGV in carp Epithelipma papulosum cyprinid (EPC) cells. Infected EPC cells were fixed with 4% paraformaldehyde-0.25% glutaraldehyde mixture, dehydrated completely, and embedded in LR White resin. This method allowed good ultrastructural preservation and specific labeling with anti-RGV antibodies. The results of IEM showed that colloidal gold mainly bound to the capsids of viral particles at the stage of viral assembly, while during the viral maturation colloidal gold bound to the envelop of virions. In addition, within the viromatrix, the amorphous structures, including dense floccules, membranous materials and tubules, also had strong colloidal gold signals, revealing that those amorphous structures were participated in RGV assembly. In contrast, no significant gold labeling signals were obtained in negative controls. The present study not only provided further evidence that amorphous structures within the viromatrix were involved in the process of RGV assembly, but also developed an improved IEM method for studying the interaction between iridovirus and host cells. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325-amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with. the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.
Resumo:
5S ribosomal DNA (rDNA) was isolated and sequenced from the gibel carp Carassius auratus gibelio with 162 chromosomes and crucian carp Carassius auratus with 100 chromosomes, and fluorescent probes for chromosome localization were prepared to ascertain the ploidy origin and evolutionary relationship between the two species. Using fluorescence in-situ hybridization (FISH), major 5S rDNA signals were localized to the short arms of three subtelocentric chromosomes in the gibel carp and to the short arms of two subtelocentrics in the crucian carp. In addition, some minor signals were detected on other chromosomes of both species. Simultaneously, six chromosomes were microdissected from the gibel carp metaphase spreads using glass needles, and the isolated chromosomes were amplified in vitro by degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR). Significantly, when the DOP-PCR-generated probes prepared from each single chromosome were hybridized, three same-sized chromosomes were painted in each gibel carp metaphase, whereas only two painted chromosomes were observed in each crucian carp metaphase spread. The data indicate that gibel carp is of triploid origin in comparison with diploid crucian carp.
Resumo:
Samples of groundwater, river water, river sediment, paddy soil, rice seeds, hen eggs, fish, umbilical cord blood, and newborn meconium were collected from October 2002 to October 2003 near a large site in China used for the disassembly of obsolete transformers and other electronic or electrical waste. Six indicator PCB congeners, three non-ortho dioxin-like PCB congeners, and six organochlorine pesticides were determined in the samples by GC with electron capture detector. The results demonstrated that the local environment and edible foods had been seriously polluted by toxic PCBs and organochlorine pesticides. The actual daily intakes (ADIs) of these pollutants were estimated for local residents living in the area. The intake data showed that the contents of PCBs in these local residents were substantial, as the ADI estimates greatly exceed the reference doses set by the World Health Organization and the United States Agency for Toxic Substances and Disease Registry. The presence of the indicator PCB congeners in the cord blood and the meconium samples, as well as significant correlations (r(2) > 0.80, p < 0.05) between these levels, suggests a potential biotransfer of these indicators from mothers to their newborns. This preliminary study showed that obsolete transformers and other electronic or electrical waste can be an important source for the emission of persistent organic pollutants into the local environment, such as through leakage, evaporation, runoff, and leaching. Contamination from this source appears to have reached the level considered to be a serious threat to environmental and human health around the disassembly site.
Resumo:
A novel launch scheme is proposed for multimode-fiber (MMF) links. Enhanced performance in 10 Gb/s MMF links using electronic equalization is demonstrated by statistical analysis of installed-base fiber and an experimental investigation. © 2007 Optical Society of America.
Resumo:
Small nuclear ribonucleoprotein particles (snRNPs) and non-snRNP splicing factors containing a serine/arginine-rich domain (SR proteins) concentrate in 'speckles' in the nucleus of interphase cells(1). It is believed that nuclear speckles act as storage sites for splicing factors while splicing occurs on nascent transcripts(2). Splicing factors redistribute in response to transcription inhibition(3,4) or viral infection(5), and nuclear speckles break down and reform as cells progress through mitosis(6). We have now identified and cloned a kinase, SRPK1, which is regulated by the cell cycle and is specific for SR proteins; this kinase is related to a Caenorhabditis elegans kinase and to the fission yeast kinase Dsk1 (ref. 7). SRPK1 specifically induces the disassembly of nuclear speckles, and a high level of SRPK1 inhibits splicing in vitro. Our results indicate that SRPK1 mag have a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells, and the reorganization of nuclear speckles during mitosis.
Resumo:
On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.
Resumo:
We have performed a systematic first-principles investigation to calculate the electronic structures, mechanical properties, and phonon-dispersion curves of NpO2. The local-density approximation+U and the generalized gradient approximation+U formalisms have been used to account for the strong on-site Coulomb repulsion among the localized Np 5f electrons. By choosing the Hubbard U parameter around 4 eV, the orbital occupancy characters of Np 5f and O 2p are in good agreement with recent experiments [A. Seibert, T. Gouder, and F. Huber, J. Nucl. Mater. 389, 470 (2009)]. Comparing to our previous study of ThO2, we note that stronger covalency exists in NpO2 due to the more localization behavior of 5f electrons of Np in line with the localization-delocalization trend exhibited by the actinides series.
Resumo:
We perform first-principles calculations of the structural, electronic, mechanical, and thermodynamic properties of thorium hydrides (ThH2 and Th4H15) based on the density functional theory with generalized gradient approximation. The equilibrium geometries, the total and partial densities of states, charge density, elastic constants, elastic moduli, Poisson's ratio, and phonon dispersion curves for these materials are systematically investigated and analyzed in comparison with experiments and previous calculations. These results show that our calculated equilibrium structural parameters are well consistent with experiments. The Th-H bonds in all thorium hydrides exhibit weak covalent character, but the ionic properties for ThH2 and Th4H15 are different due to their different hydrogen concentration. It is found that while in ThH2 about 1.5 electrons transfer from each Th atom to H, in Th4H15 the charge transfer from each Th atom is around 2.1 electrons. Our calculated phonon spectrum for the stable body-centered tetragonal phase of ThH2 accords well with experiments. In addition we show that ThH2 in the fluorite phase is mechanically and dynamically unstable.
Resumo:
The configurations, stability, and electronic structure of AuSin (n = 1-16) clusters have been investigated within the framework of the density functional theory at the B3PW91/LanL2DZ and PW91/DNP levels. The results show that the Au atom begins to occupy the interior site for cages as small as Si-11 and for Si-12 the Au atom completely falls into the interior site forming Au@Si-12 cage. A relatively large embedding energy and small HOMO-LUMO gap are also found for this Au@Si-12 structure indicating enhanced chemical activity and good electronic transfer properties. All these make Au@Si-12 attractive for cluster-assembled materials.
Resumo:
Using the density function theory within the generalized gradient approximation, the band structures of wurtzite ZnO, BeO and MgO have been calculated. The effective-mass parameters are fitted using the calculated eigenvalues. The Dresselhaus spin-orbit effect appears in the k[1 00] direction, and is zero in the high symmetry direction k[00 1]. The orderings of valence band split by the crystal-field and spin-orbit coupling in wurtzite ZnO, BeO and MgO are identified by analyzing the wave function characters calculated by projecting the wave functions onto p-state in the spherical harmonics. For wurtzite ZnO, the ordering of valence band is Still Gamma(7) > Gamma(9) > Gamma(7) due to the negative spin-orbit coupling splitting energy and the positive crystal-field splitting energy. Thus, the Thomas' conclusion is confirmed. For wurtzite BeO and MgO, although their orderings of valence bands are Gamma(7) > Gamma(9) > Gamma(7) too, the origins of their orderings are different from that of wurtzite ZnO. Zn1-x,YxO (Y = Mg, Be) doped with N and P atoms have been studied using first-principles method. The calculated results show that N atom doped in Zn1-x BexO has more shallow acceptor energy level with increasing the concentration of Be atom. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]
Resumo:
Calculations of the electronic structure and the density of states of GaN with Mn are carried out by means of first-principles plane-wave pesudopotential method based on density functional theory. The results reveal a 100% spin polarized impurity band in band structure of Ga1-xMnxN due to hybridization of Mn 3d and N 2p orbitals. The material is half metallic and suited for spin injectors. In addition, a peak of refractive index can be observed near the energy gap. The absorption coefficient increases in the UV region with the increase of the Mn content.