998 resultados para Electromagnetic interactions
Resumo:
The U.S. East Coast pelagic longline fishery has a history of interactions with marine mammals, where animals are hooked and entangled in longline gear. Pilot whales (Globicephala spp.) and Risso’s dolphin (Grampus griseus) are the primary species that interact with longline gear. Logistic regression was used to assess the environmental and gear characteristics that influence interaction rates. Pilot whale inter-actions were correlated with warm water temperatures, proximity to the shelf break, mainline lengths greater than 20 nautical miles, and damage to swordfish catch. Similarly, Risso’s dolphin interactions were correlated with geographic location, proximity the shelf break, the length of the mainline, and bait type. The incidental bycatch of marine mammals is likely associated with depredation of the commercial catch and is increased by the overlap between marine mammal and target species habitats. Altering gear characteristics and fishery practices may mitigate incidental bycatch and reduce economic losses due to depredation.
Resumo:
MP2/aug-cc-pVTZ calculations were performed on complexes of aluminium and boron trihydrides and trihalides with acetylene and ethylene. These complexes are linked through triel bonds where the triel center (B or Al) is characterized by the Lewis acid properties through its -hole region while -electrons of C2H2 or C2H4 molecule play the role of the Lewis base. Some of these interactions possess characteristics of covalent bonds, i.e., the Al--electrons links as well as the interaction in the BH3-C2H2 complex. The triel--electrons interactions are classified sometimes as the 3c-2e bonds. In the case of boron trihydrides, these interactions are often the preliminary stages of the hydroboration reaction. The Quantum Theory of Atoms in Molecules as well as the Natural Bond Orbitals approach are applied here to characterize the -hole--electrons interactions.
Resumo:
Survey- and fishery-derived biomass estimates have indicated that the harvest indices for Pacific cod (Gadus macrocephalus) within a portion of Steller sea lion (Eumetopias jubatus) critical habitat in February and March 2001 were five to 16 times greater than the annual rate for the entire Bering Sea-Aleutian Islands stock. A bottom trawl survey yielded a cod biomass estimate of 49,032 metric tons (t) for the entire area surveyed, of which less than half (23,329 t) was located within the area used primarily by the commercial fishery, which caught 11,631 t of Pacific cod. Leslie depletion analyses of fishery data yielded biomass estimates of approximately 14,500 t (95% confidence intervals of approximately 9,000–25,000 t), which are within the 95% confidence interval on the fished area survey estimate (12,846–33,812 t). These data indicate that Leslie analyses may be useful in estimating local fish biomass and harvest indices for certain marine fisheries that are well constrained spatially and relatively short in duration (weeks). In addition, fishery effects on prey availability within the time and space scales relevant to foraging sea lions may be much greater than the effects indicated by annual harvest rates estimated from stock assessments averaged across the range of the target spec
Resumo:
Satellite telemetry is a common tool for examining sea turtle movements, and many research programs have successfully tracked adults. Relatively short satellite track durations recorded for juvenile Kemp’s ridley sea turtles, Lepidochelys kempii, in the northwestern Gulf of Mexico raised questions regarding premature transmission loss. We examined interactions between juvenile sea turtles outfitted with platform terminal transmitters (PTT’s) and turtle excluder devices (TED’s) and the potential for transmission loss due to this interaction. A pilot study was conducted with eight 34-month-old, captive-reared loggerhead sea turtles, Caretta caretta; a larger trial the following year used twenty 34-month-olds. Half of the turtles in each trial were outfitted with dummy PTT’s (8×4×2 cm), and all turtles were sent through a trawl equipped with a bottom-opening Super-Shooter TED. No apparent damage was sustained by any PTT, but four of five PTT-outfitted loggerheads encountering the TED carapace-first exhibited increased escape times when the PTT wedged between the TED deflector bars (10.2 cm apart). Overall, 15 loggerheads (54%) impacted the TED carapace-first. Attachment of PTT’s to smaller sea turtles may slow or, in worst cases, inhibit escape from TED’s. Likewise, loose or poorly secured PTT’s could impede escape or be shed during such an interaction. Researchers tracking small turtles in or near regions with trawling activity should consider PTT size and shape and the combined PTT/adhesive profile to minimize potentially detrimental interactions with TED’s.
Resumo:
Long-term trends in the abundance and distribution of several pinniped species and commercially important fisheries of New England and the contiguous U.S. west coast are reviewed, and their actual and potential interactions discussed. Emphasis is on biological interactions or competition. The pinnipeds include the western North Atlantic stock of harbor seals, Phoca vitulina concolor; western North Atlantic gray seals, Halochoerus grypus; the U.S. stock of California sea lions, Zalophus californianus californianus; the eastern stock of Steller sea lions, Eumetopias jubatus; and Pacific harbor seals, Phoca vitulina richardii. Fisheries included are those for Atlantic cod, Gadus morhua; silver hake, Merluccius bilinearis; Atlantic herring, Clupea harengus; the coastal stock of Pacific whiting, Merluccius productus; market squid, Loligo opalescens; northern anchovy, Engraulis mordax; Pacific her-ring, Clupea pallasi; and Pacific sardine, Sardinops sagax. Most of these pinniped populations have grown exponentially since passage of the U.S. Marine Mammal Protection Act in 1972. They exploit a broad prey assemblage that includes several commercially valuable species. Direct competition with fisheries is therefore possible, as is competition for the prey of commercially valuable fish. The expanding pinniped populations, fluctuations in commercial fish biomass, and level of exploitation by the fisheries may affect this potential for competition. Concerns over pinnipeds impacting fisheries (especially those with localized spawning stocks or at low biomass levels) are more prevalent than concerns over fisheries’ impacts on pinnipeds. This review provides a framework to further evaluate potential biological interactions between these pinniped populations and the commercial fisheries with which they occur.
Resumo:
Several fisheries in Hawaii are known to have interactions with protected cetaceans, seabirds, marine turtles, or seals. Handline fisheries for bottomfish, tuna, and mackerel scad lose bait and catch to bottlenose dolphins, rough-toothed dolphins, and Hawaiian monk seals. Troll fisheries for billfish lose live bait to bottlenose dolphins, rough-toothed dolphins, albatrosses, and boobies; these fisheries may also lose catch to false killer whales. A longline fishery for tuna and billfish has burgeoned in Hawaii since 1987, resulting in interactions with protected species; marine turtles, seabirds, and monk seals take bait and are known to become hooked, and false killer whales may take catch. Research on deterrents or alternative fishing methods has been limited, and interactions have been reduced primarily through management and regulatory actions. These include area closures and gear requirements. An observer program has also been established for the bottomfish and longline fisheries.