941 resultados para Electrodeposition of metal
Resumo:
For efficient use of metal oxides, such as MnO(2) and RuO(2), in pseudocapacitors and other electrochemical applications, the poor conductivity of the metal oxide is a major problem. To tackle the problem, we have designed a ternary nanocomposite film composed of metal oxide (MnO(2)), carbon nanotube (CNT), and conducting polymer (CP). Each component in the MnO(2)/CNT/CP film provides unique and critical function to achieve optimized electrochemical properties. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance (SC) of the ternary composite electrode can reach 427 F/g. Even at high mass loading and high concentration of MnO(2) (60%), the film still showed SC value as high as 200 F/g. The electrode also exhibited excellent charge/discharge rate and good cycling stability, retaining over 99% of its initial charge after 1000 cycles. The results demonstrated that MnO(2) is effectively utilized with assistance of other components (fFWNTs and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in the electrode. Such ternary composite is very promising for the next generation high performance electrochemical supercapacitors.
Resumo:
The ability to manipulate the coordination chemistry of metal ions has significant ramifications for the study and treatment of metal-related health concerns, including iron overload, UV skin damage, and microbial infection among many other conditions. To address this concern, chelating agents that change their metal binding characteristics in response to external stimuli have been synthesized and characterized by several spectroscopic and chromatographic analytical methods. The primary stimuli of interest for this work are light and hydrogen peroxide.
Herein we report the previously unrecognized photochemistry of aroylhydrazone metal chelator ((E)-N′-[1-(2-hydroxyphenyl)ethyliden]isonicotinoylhydrazide) (HAPI) and its relation to HAPI metal binding properties. Based on promising initial results, a series of HAPI analogues was prepared to probe the structure-function relationships of aroylhydrazone photochemistry. These efforts elucidate the tunable nature of several aroylhydrazone photoswitching properties.
Ongoing efforts in this laboratory seek to develop compounds called prochelators that exhibit a switch from low to high metal binding affinity upon activation by a stimulus of interest. In this context, we present new strategies to install multiple desired functions into a single structure. The prochelator 2-((E)-1-(2-isonicotinoylhydrazono)ethyl)phenyl (E)-3-(2,4-dihydroxyphenyl)acrylate (PC-HAPI) is masked with a photolabile trans-cinnamic acid protecting group that releases umbelliferone, a UV-absorbing, antioxidant coumarin along with a chelating agent upon UV irradiation. In addition to the antioxidant effects of the coumarin, the released chelator (HAPI) inhibits metal-catalyzed production of damaging reactive oxygen species. Finally a peroxide-sensitive prochelator quinolin-8-yl (Z)-3-(4-hydroxy-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)acrylate (BCQ) has been prepared using a novel synthetic route for functionalized cis-cinnamate esters. BCQ uses a novel masking strategy to trigger a 90-fold increase in fluorescence emission, along with the release of a desired chelator, in the presence of hydrogen peroxide.
Resumo:
This paper describes work performed at IRSID/USINOR in France and the University of Greenwich, UK, to investigate flow structures and turbulence in a water-model container, simulating aspects typical of metal tundish operation. Extensive mean and fluctuating velocity measurements were performed at IRSID using LDA to determine the flow field and these form the basis for a numerical model validation. This apparently simple problem poses several difficulties for the CFD modelling. The flow is driven by the strong impinging jet at the inlet. Accurate description of the jet is most important and requires a localized fine grid, but also a turbulence model that predicts the correct spreading rates of jet and impinging wall boundary layers. The velocities in the bulk of the tundish tend to be (indeed need to be) much smaller than those of the jet, leading to damping of turbulence, or even laminar flow. The authors have developed several low-Reynolds number (low-Re) k–var epsilon model variants to compute this flow and compare against measurements. Best agreement is obtained when turbulence damping is introduced to account not only for walls, but also for low-Re regions in the bulk – the k–var epsilon model otherwise allows turbulence to accumulate in the container due to the restricted outlet. Several damping functions are tested and the results reported here. The k–ω model, which is more suited to transitional flow, also seems to perform well in this problem.
Resumo:
The computational modelling of metal forming processes is now well established. In this work
Resumo:
Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.
Resumo:
Traditionally, before flip chips can be assembled the dies have to be attached with solder bumps. This process involves the deposition of metal layers on the Al pads on the dies and this is called the under bump metallurgy (UBM). In an alternative process, however, Copper (Cu) columns can be used to replace solder bumps and the UBM process may be omitted altogether. After the bumping process, the bumped dies can be assembled on to the printed circuit board (PCB) by using either solder or conductive adhesives. In this work, the reliability issues of flip chips with Cu column bumped dies have been studied. The flip chip lifetime associated with the solder fatigue failure has been modeled for a range of geometric parameters. The relative importance of these parameters is given and solder volume has been identified as the most important design parameter for long-term reliability. Another important problem that has been studied in this work is the dissolution of protection metals on the pad and Cu column in the reflow process. For small solder joints the amount of Cu which dissolves into the molten solder after the protection layers have worn out may significantly affect solder joint properties.
Resumo:
When chitin is used in pharmaceutical formulations, processing of chitin with metal silicates is advantageous, from both an industrial and pharmaceutical perspective, compared to processing using silicon dioxide. Unlike the use of acidic and basic reagents for the industrial preparation of chitin-silica particles, coprecipitation of metal silicates is dependent upon a simple replacement reaction between sodium silicate and metal chlorides. When coprecipitated onto chitin particles, aluminum, magnesium, or calcium silicates result in nonhygroscopic, highly compactable/disintegrable compacts. Disintegration and hardness parameters for coprocessed chitin compacts were investigated and found to be independent of the particle size. Capillary action appears to be the major contributor to both water uptake and the driving force for disintegration of compacts. The good compaction and compression properties shown by the chitin-metal silicates were found to be strongly dependent upon the type of metal silicate coprecipitated onto chitin. In addition, the inherent binding and disintegration abilities of chitin-metal silicates are useful in pharmaceutical applications when poorly compressible and/or highly nonpolar drugs need to be formulated. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4887-4901, 2009.
Resumo:
Adsorption-based processes are widely used in the treatment of dilute metal-bearing wastewaters. The development of versatile, low-cost adsorbents is the subject of continuing interest. This paper examines the preparation, characterization and performance of a micro-scale composite adsorbent composed of silica gel (15.9 w/w%), calcium silicate hydrate gel (8.2 w/w%) and calcite (75.9 w/w%), produced by the accelerated carbonation of tricalcium silicate (C(3)S, Ca(3)SiO(5)). The Ca/Si ratio of calcium silicate hydrate gel (C-S-H) was determined at 0.12 (DTA/TG), 0.17 ((29)Si solid-state MAS/NMR) and 0.18 (SEM/EDS). The metals-retention capacity for selected Cu(II), Pb(II), Zn(II) and Cr(III) was determined by batch and column sorption experiments utilizing nitrate solutions. The effects of metal ion concentration, pH and contact time on binding ability was investigated by kinetic and equilibrium adsorption isotherm studies. The adsorption capacity for Pb(II), Cr(III), Zn(II) and Cu(II) was found to be 94.4 mg/g, 83.0 mg/g, 52.1 mg/g and 31.4 mg/g, respectively. It is concluded that the composite adsorbent has considerable potential for the treatment of industrial wastewater containing heavy metals.
Resumo:
Due to the impacts of natural processes and anthropogenic activities, different coastal wetlands are faced with variable patterns of heavy metal contamination. It is important to quantify the contributions of pollutant sources, in order to adopt appropriate protection measures for local ecosystems. The aim of this research was to compare the heavy metal contamination patterns of two contrasting coastal wetlands in eastern China. In addition, the contributions from various metal sources were identified and quantified, and influencing factors, such as the role of the plant Spartina alterniflora, were evaluated. Materials and methods Sediment samples were taken from two coastal wetlands (plain-type tidal flat at the Rudong (RD) wetland vs embayment-type tidal flat at Luoyuan Bay (LY)) to measure the content of Al, Fe, Co, Cr, Cu, Mn, Mo, Ni, Sr, Zn, Pb, Cd, and As. Inductively coupled plasma atomic emission spectrometry, flame atomic absorption spectrometry, and atomic fluorescence spectrometry methods were used for metal detection. Meanwhile, the enrichment factor and geoaccumulation index were applied to assess the pollution level. Principle component analysis and receptor modeling were used to quantify the sources of heavy metals. Results and discussion Marked differences in metal distribution patterns between the two systems were present. Metal contents in LY were higher than those in RD, except for Sr and Mo. The growth status of S. alterniflora influenced metal accumulations in RD, i.e., heavy metals were more easily adsorbed in the sediment in the following sequence: Cu > Cd > Zn > Cr > Al > Pb ≥ Ni ≥ Co > Fe > Sr ≥ Mn > As > Mo as a result of the presence and size of the vegetation. However, this phenomenon was not observed in LY. A higher potential ecological risk was associated with LY, compared with RD, except for Mo. Based on a receptor model output, sedimentary heavy metal contents at RD were jointly influenced by natural sedimentary processes and anthropogenic activities, whereas they were dominated by anthropogenic activities at LY. Conclusions A combination of geochemical analysis and modeling approaches was used to quantify the different types of natural and anthropogenic contributions to heavy metal contamination, which is useful for pollution assessments. The application of this approach reveals that natural and anthropogenic processes have different influences on the delivery and retention of metals at the two contrasting coastal wetlands. In addition, the presence and size of S. alterniflora can influence the level of metal contamination in sedimentary environments.
Resumo:
The semiconductor alloy indium gallium nitride (InxGa1-xN) offers substantial potential in the development of high-efficiency multi-junction photovoltaic devices due to its wide range of direct band gaps, strong absorption and other optoelectronic properties. This work uses a variety of characterization techniques to examine the properties of InxGa1-xN thin films deposited in a range of compositions by a novel plasma-enhanced evaporation deposition system. Due to the high vapour pressure and low dissociation temperature of indium, the indium incorporation and, ultimately, control of the InxGa1-xN composition was found to be influenced to a greater degree by deposition temperature than variations in the In:Ga source rates in the investigated region of deposition condition space. Under specific deposition conditions, crystalline films were grown in an advantageous nano-columnar microstructure with deposition temperature influencing column size and density. The InxGa1-xN films were determined to have very strong absorption coefficients with band gaps indirectly related to indium content. However, the films also suffer from compositional inhomogeneity and In-related defect complexes with strong phonon coupling that dominates the emission mechanism. This, in addition to the presence of metal impurities, harms the alloy’s electronic properties as no significant photoresponse was observed. This research has demonstrated the material properties that make the InxGa1-xN alloy attractive for multi-junction solar cells and the benefits/drawbacks of the plasma-enhanced evaporation deposition system. Future work is needed to overcome significant challenges relating to crystalline quality, compositional homogeneity and the optoelectronic properties of In-rich InxGa1-xN films in order to develop high-performance photovoltaic devices.
Resumo:
Future read heads in hard disc storage require high conformal coatings of metal magnetic layers over high aspect ratio profiles. This paper describes pioneering work on the use of MOCVD for the deposition of cobalt layers. While pure cobalt layers could be deposited at 400C their magnetic properties are poor. It was found that the magnetic properties of the layers could be significantly enhanced with an optimised rapid thermal anneal. This work was sponsored by Seagate Technology and led to a follow up PhD studentship on the co-deposition of cobalt and iron by MOCVD.
Resumo:
Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to observe microbial dynamics in real time and with high spatial resolution. Here, we investigate the use of noninvasive geophysical methods to monitor biomineralization at the laboratory scale during stimulated sulfate reduction under dynamic flow conditions. Alterations in sediment characteristics resulting from microbe-mediated sulfide mineral precipitation were concomitant with changes in complex resistivity and acoustic wave propagation signatures. The sequestration of zinc and iron in insoluble sulfides led to alterations in the ability of the pore fluid to conduct electrical charge and of the saturated sediments to dissipate acoustic energy. These changes resulted directly from the nucleation, growth, and development of nanoparticulate precipitates along grain surfaces and within the pore space. Scanning and transmission electron microscopy (SEM and TEM) confirmed the sulfides to be associated with cell surfaces, with precipitates ranging from aggregates of individual 3-5 nm nanocrystals to larger assemblages of up to 10-20 m in diameter. Anomalies in the geophysical data reflected the distribution of mineral precipitates and biomass over space and time, with temporal variations in the signals corresponding to changes in the aggregation state of the nanocrystalline sulfides. These results suggest the potential for using geophysical techniques to image certain subsurface biogeochemical processes, such as those accompanying the bioremediation of metal-contaminated aquifers.
Resumo:
High-resolution Hubble Space Telescope ultraviolet spectra for five B-type stars in the Magellanic Bridge and in the Large (LMC) and Small (SMC) Magellanic Clouds have been analysed to estimate their iron abundances. Those for the Clouds are lower than estimates obtained from late-type stars or the optical lines in B-type stars by approximately 0.5 dex. This may be due to systematic errors possibly arising from non-local thermodynamic equilibrium (non-LTE) effects or from errors in the atomic data, as similar low Fe abundances have previously been reported from the analysis of the ultraviolet spectra of Galactic early-type stars. The iron abundance estimates for all three Bridge targets appear to be significantly lower than those found for the SMC and LMC by approximately -0.5 and -0.8 dex, respectively, and these differential results should not be affected by any systematic errors present in the absolute abundance estimates. These differential iron abundance estimates are consistent with the underabundances for C, N, O, Mg and Si of approximately -1.1 dex relative to our Galaxy previously found in our Bridge targets. The implications of these very low metal abundances for the Magellanic Bridge are discussed in terms of metal deficient material being stripped from the SMC.
Resumo:
An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.
Resumo:
The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide, [Hbet][Tf2N], was used to dissolve metal oxides and hydroxides. The crystal structures of the resulting metal betaine bistriflimide complexes exhibit a rich structural variety. A trimeric structure was found for the cobalt(II) compound, [Co-3(bet)(8)(Hbet)(2)(H2O)(2)][Tf2N](9)[Hbet], a tetrameric structure for the manganese(II) and zinc(II) compound, [Mn-4(bet)(10)(H2O)(4)][Tf2N](8) and [Zn-4(bet)(10)(H2O)(2)][Tf2N](8), respectively, a pentameric structure for the nickel(II) compound, [Ni-5(bet)(12)(H2O)(6)][Tf2N](10), an oxo-hydroxo-cluster formation for the lead(II) compound, [(Pb4O)Pb(OH)(bet)(8)(Tf2N)3] [Tf2N](4)center dot MeOH, and a polymeric structure for the silver(I) compound, [Ag-2(bet)(2)(Tf2N)Ag-2(bet)(2)][Tf2N](3). The zwitterionic nature of the betaine ligand and the weakly coordinating ability of the bis(trifluoromethylsulfonyl)imide [Tf2N]- anion facilitates the incorporation of metal ions into oligonuclear and polynuclear metal complexes.