997 resultados para Electrical bias
Resumo:
The influence of oxygen defects on the resistivity and mobility of silicon wafers is discussed. Grinding processes were performed on the surfaces of samples in order to obtain the information on interior defects of the samples. Spreading resistivity and Hall measurements prove that SiO(x) complexes alone result in resistivity increase and mobility decrease. Deep level transient spectroscopy experiments prove that SiO(x) complexes alone are electrically active. A mechanism of carrier scattering by electrically active SiO(x) complex is proposed to explain the changes of resistivity and mobility.
Resumo:
Cd in GaAs is an acceptor atom and has the largest atomic diameter among the four commonly-used group-II shallow acceptor impurities (Be, Mg, Zn and Cd). The activation energy of Cd (34.7 meV) is also the largest one in the above four impurities, When Cd is doped by ion implantation, the effects of lattice distortion are expected to be apparently different from those samples ion-implanted by acceptor impurities with smaller atomic diameter. In order to compensate the lattice expansion and simultaneously to adjust the crystal stoichiometry, dual incorporation of Cd and nitrogen (N) was carried out into GaAs, Ion implantation of Cd was made at room temperature, using three energies (400 keV, 210 keV, 110 keV) to establish a flat distribution, The spatial profile of N atoms was adjusted so as to match that of Cd ones, The concentration of Cd and N atoms, [Cd] and [N] varied between 1 x 10(16) cm(-3) and 1 x 10(20) cm(-3). Two type of samples, i.e., solely Cd+ ion-implanted and dually (Cd+ + N+) ion-implanted with [Cd] = [N] were prepared, For characterization, Hall effects and photoluminescence (PL) measurements were performed at room temperature and 2 K, respectively. Hall effects measurements revealed that for dually ion-implanted samples, the highest activation efficiency was similar to 40% for [Cd] (= [N])= 1 x 10(18) cm(-3). PL measurements indicated that [g-g] and [g-g](i) (i = 2, 3, alpha, beta,...), the emissions due to the multiple energy levels of acceptor-acceptor pairs are significantly suppressed by the incorporation of N atoms, For [Cd] = [N] greater than or equal to 1 x 10(19) cm(-3), a moderately deep emission denoted by (Cd, N) is formed at around 1.45-1.41 eV. PL measurements using a Ge detector indicated that (Cd, N) is increasingly red-shifted in energy and its intensity is enhanced with increasing [Cd] = [N], (Cd, N) becomes a dominant emission for [Cd] = [N] = 1 x 10(20) cm(-3). The steep reduction of net hole carrier concentration observed for [Cd]/[N] less than or equal to 1 was ascribed to the formation of (Cd, N) which is presumed to be a novel radiative complex center between acceptor and isoelectronic atoms in GaAs.
Resumo:
Charge build-up process in the emitter of a double-barrier resonant tunneling structure is studied by using photoluminescence spectroscopy. Clear evidence is obtained that the charge accumulation in the emitter keeps almost constant with bias voltages in the resonant regime, while it increases remarkably with bias voltages beyond resonant regime. The optical results are in good agreement with the electrical measurement. It is demonstrated that the band gap renormalization plays a certain rob in the experiment.
Resumo:
A technologically important undoped semi-insulating (SI) GaAs single crystal was successfully grown in the Chinese recoverable satellite as far as we know for the first time by using a similar growth configuration described previously. The experimental results proved that the space SI GaAs crystals have a lower density of defects and defect-impurity complexes as well as a better uniformity.
Resumo:
Neutron induced defect levels in high resistivity silicon detectors have been studied using a current-based macroscopic defect analysis system: thermally stimulated current (TSC) and current deep level transient spectroscopy (I-DLTS). These studies have been correlated to the traditional C-V, I-V, and transient current and charge techniques (TCT/TChT) after neutron radiation and subsequent thermal anneals. It has been found that the increases of the space charge density, N-eff, in irradiated detectors after thermal anneals (N-eff reverse anneal) correspond to the increases of deep levels in the silicon bandgap. In particular, increases of the double vacancy center (V-V and V-V-- -) and/or C-i-O-i level have good correlations with the N-eff reverse anneal. It has also been observed that the leakage current of highly irradiated (Phi(n) > 10(13) n/cm(2)) detectors increases after thermal anneals, which is different from the leakage current annealing behavior of slightly irradiated (Phi(n) < 10(13) n/cm(2)) detectors. It is apparent that V-V center and/or C-i-O-i level play important roles in both N-eff and leakage current degradations for highly irradiated high resistivity silicon detectors.
Resumo:
Perpendicular transport in a specially designed, doped and weakly coupled GaAs/AlAs superlattice is investigated. A linear current-voltage at a bias within +/-10 mV and a negative differential velocity effect at a bias of about +/-40 mV are observed at low temperatures. The miniband conductance near zero electric field is studied as a function of temperature. It is found that the measured conductance increases slightly as the temperature increases to about 30 K, decreases as the temperature rises from 30 K to 70 K, and then increases strongly above 70 K, indicating the existence of a mobility gap.
RESEARCH ON ELECTRICAL-PROPERTIES OF AMPHIPHILIC LIPID-MEMBRANES BY MEANS OF INTERDIGITAL ELECTRODES
Resumo:
Lipids are the main component of all cell membranes and also important mimetic materials. Moreover, it was found recently that they can be used as sensitive membranes for olfactory and taste sensors. Hence the understanding of lipid resistance is important both in sensors and in life sciences. Thirteen lipids were examined by means of interdigital electrodes with narrow gaps of 20-50 mu m, made by IC technology. The membrane lateral resistance in air, resisting electrical voltage, the influence of impurities on resistance and the resistance change in acetic acid vapour are presented for the first time. It is shown that the electrical resistivity for self-assembling lipids depends on their duration of being in an electric field and the content of the conductive impurities. The interdigital electrode is a transducer as well as a powerful tool for researching biomaterials and mimicking materials. The conducting mechanism of lipids is discussed. This method is also suitable for some polymer membranes.
Resumo:
Vertical cavity surface emitting lasers operating in the 1.3- and 1.5-mu m wavelength ranges are highly attractive for telecommunications applications. However, they are far less well-developed than devices operating at shorter wavelengths. Pulsed electrically-injected lasing at 1.5 mu m, at temperatures up to 240 K, is demonstrated in a vertical-cavity surface-emitting laser with one epitaxial and one dielectric reflector. This is an encouraging result in the development of practical sources for optical fiber communications systems.
Resumo:
Mg-doped GaN layers prepared by metalorganic chemical vapor deposition were annealed at temperatures between 550 and 950℃. Room temperature (RT) Hall and photoluminescence (PL) spectroscopy measurements were performed on the as-grown and annealed samples. After annealing at 850℃, a high hole concentration of 8 × 10~(17) cm~(-3) and a resistivity of 0. 8lΩ·cm are obtained. Two dominant defect-related PL emission bands in GaN.. Mg are investigated; the blue band is centered at 2. 8eV (BL) and the ultraviolet emission band is around 3.27eV (UVL). The relative intensity of BL to UVL increases after annealing at 550℃, but decreases when theannealing temperature is raised from 650 to 850℃, and finally increases sharply when the annealing temperature is raised to 950C. The hole concentration increases with increased Mg doping, and decreases for higher Mg doping concentrations. These results indicate that the difficulties in achieving high hole concentration of 10~(18)cm~(-3) appear to be related not only to hydrogen passivation, but also to self-compensation.
Resumo:
The electrical properties of annealed undoped n-type InP are studied by temperature dependent Hall effect (TDH) and current-voltage (I-V) measurements for semiconducting and semi-insulating samples, receptively. Defect band conduction in annealed semiconducting InP can be observed from TDH measurement, which is similar to those of as-grown unintentionally doped InP with low carrier concentration and moderate compensation. The I-V curves of annealed undoped SI InP exhibit ohmic property in the applied field region up to the onset of breakdown. Such a result is different from that of as-grown Fe-doped SI InP which has a nonlinear region in I-V curve explained by the theory of space charge limited current.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
We present some results on the effect of initial buffer layer on the crystalline quality of Cubic GaN epitaxial layers grown on GaAs(100) substrates by metalorganic chemical vapor deposition. Photoluminescence and Hall measurements were performed to characterize the electrical and optical properties of cubic GaN. The crystalline quality subsequently grown high-temperature (HT) cubic GaN layers strongly depended on thermal effects during the temperature ramping process after low temperature (LT) growth of the buffer layers. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to investigate this temperature ramping process. Furthermore, the role of thermal treatment during the temperature ramping process was identified. Using the optimum buffer layer, the full width at half maxim (FWHM) at room temperature photoluminescence 5.6 nm was achieved. To our knowledge, this is the best FWHM value for cubic GaN to date. The background carrier concentration was as low as 3 x 10(13) cm(-3). (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
We have found that GaN epilayers grown by NH3-source molecular beam epitaxy (MBE) contain hydrogen. Dependent on the hydrogen concentration, GaN on (0001) sapphire can be either under biaxially compressive strain or under biaxially tensile strain. Furthermore, we notice that background electrons in GaN increase with hydrogen incorporation. X-ray photoelectron spectroscopy (XPS) measurements of the N1s region indicate that hydrogen is bound to nitrogen. So, the microdefect Ga...H-N is an effective nitrogen vacancy in GaN, and it may be a donor partly answering for the background electrons. (C) 1999 Elsevier Science B.V. All rights reserved.