969 resultados para Electric power - Protection
Resumo:
How companies can sell their surplus production capacity of electric power in Brazil? This work was developed from the question presented and focusing on clarification of procedures to enter the Brazilian electricity market by providing basic guidelines based on resolutions by National Agency of Electric Energy, National System Operator procedures and rules of the Assembly of Electric Energy Commercialization. It features subsidy to companies that fit this profile to evaluate the possibility to sell their surplus electricity. The general aim was to analyze the procedures and the necessary steps to make this sale happen. Was developed through a literature review where an overview of the Brazilian electric sector and a case study of a company that has excess capacity of electricity, but doesn’t make its marketing. Resulted in the expected clarification as well as the incentive for companies through the information presented, the entry in this trade since power is still crucial to the country's economic growth and ensure its availability in quantity demanded is a challenge of the utmost importance for satisfactory results are achieved economic development contributing to the progress of our society
Resumo:
The current world's need for clean and renewable energy sources aligned with the strong Brazilian growth looking to diversify its electric power generation sources, highly dependent on hydropower and petroleum encourages the implementation of technologies that reach this growth with diversity and cleaning. The sun energy source is considered inexhaustible and can meet the demand for energy through thermo solar plants to generate electricity. Several technologies are being studied and developed in the world and they can be used to generate electricity from the solar concentration, but in Brazil its use is still not found commercially. It is therefore essential to understand these technologies and develop knowledge about them so they can be implemented in Brazil. This work brings an overview of the thermo solar generation in Brazil, showing the different technologies and a thermodynamic simulation of one of such technologies considering a hybrid plant with complementary generation biomass, aiming at the generation of 1 MW in the Brazilian Northeast
Resumo:
The use of electricity for obtaining light has been quite an issue currently discussed, either through new technologies that are emerging, the quest for greater efficiency, reduced waste and rational use. This work comprises a lighting design applied to a metallurgical based Brazilian Standard 5413 which mentions levels of luminance for interior and, in the case of this work, for a sandblasting booth. Ways to improve the workplace and luminosity presented before the project and also after its implementation are discussed. Technologies are chosen guided by technical calculations according to the illuminance values they want to reach for the environment studied. All pertinent design features are critically analyzed and discussed, and at the end proposals are presented, relating to each other in a comparative framework, so the best solution is applied in a practical way in the enclosure. Results are also presented concerning the maintenance of a bank of capacitors to correct the power factor for the metals studied company
Resumo:
The reason of this work is perform a study about using of electrical energy to identify the opportunities through rational use of electrical energy. For that it was necessary perform an analysis of hired energy against consumption. Based in a guide of energy analysis were found the main consumers and verified the main problems, which generate excessive use of electrical energy in a plastic injection factory. It was also analyzed the painting line because there are some thermal equipment that use electrical energy. Based on the data obtained will be proposed ways to reduce the needless consumption and energy use of rationally and efficiently, in addition to re-evaluate the contracted demand based on the new policy of supplying and charging.It were also proposed thermodynamics solutions to reduce the energy consumed in thermal process
Resumo:
This paper aims at comparing the national and international incentive policies in energy efficiency investment and presenting the main trends, measures adopted and economical and environmental results obtained, as well as possible improvements and expansions of these programs. This analysis is justified by the current moment, not only of the Brazilian Power Systems (SEB) but also of the global power systems with the constant increase of demand and depletion of natural resources implying in a need of a better use of them and of the power they generate, which directly affects the losses on the generation, transmission, distribution and consumption of energy, in addition to reducing the impacts on the environment. At last but not least, through this study it was possible to gleam not only at new possible ways for these programs, but also failures and inefficiencies that can be improved in the measures currently being used
Resumo:
Distribution networks are formed by long lines that carry electricity substations to homes and industries. These lines have associated impedance and depending on operating conditions of the network these impedances may vary. This paper provides a detailed analysis of the effects observed in studies of voltage drop, short circuit and electrical losses, when considered the drivers sequence impedances used in primary distribution network at different temperatures. Therefore, it is initially presented a calculation methodology and details the factors that influence the final values. The methodology presented tackles in a practical way the main factors that directly or indirectly influence the values of the impedances as an emblematic example and will be properly dealt with throughout the paper is the effect of temperature on the values of the sequence impedances. More specifically is dealt with the case of XLPE cables protected, by having a higher maximum operating temperature than the operating temperature of the network. The effects observed in the power flow generated when considering the impedance values at both temperatures were analyzed. The impedance drivers tend to increase with increasing temperature. Thus the impedance of the conductor XLPE protected will tend to be greater for the maximum operating temperature for which the operating temperature of the network, resulting in greater voltage drop and higher electrical losses
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS