943 resultados para Electric Machine drive systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research work, a new routing protocol for Opportunistic Networks is presented. The proposed protocol is called PSONET (PSO for Opportunistic Networks) since the proposal uses a hybrid system composed of a Particle Swarm Optimization algorithm (PSO). The main motivation for using the PSO is to take advantage of its search based on individuals and their learning adaptation. The PSONET uses the Particle Swarm Optimization technique to drive the network traffic through of a good subset of forwarders messages. The PSONET analyzes network communication conditions, detecting whether each node has sparse or dense connections and thus make better decisions about routing messages. The PSONET protocol is compared with the Epidemic and PROPHET protocols in three different scenarios of mobility: a mobility model based in activities, which simulates the everyday life of people in their work activities, leisure and rest; a mobility model based on a community of people, which simulates a group of people in their communities, which eventually will contact other people who may or may not be part of your community, to exchange information; and a random mobility pattern, which simulates a scenario divided into communities where people choose a destination at random, and based on the restriction map, move to this destination using the shortest path. The simulation results, obtained through The ONE simulator, show that in scenarios where the mobility model based on a community of people and also where the mobility model is random, the PSONET protocol achieves a higher messages delivery rate and a lower replication messages compared with the Epidemic and PROPHET protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid crystals (LCs) have revolutionized the display and communication technologies. Doping of LCs with inorganic nanoparticles such as carbon nanotubes, gold nanoparticles and ferroelectric nanoparticles have garnered the interest of research community as they aid in improving the electro-optic performance. In this thesis, we examine a hybrid nanocomposite comprising of 5CB liquid crystal and block copolymer functionalized barium titanate ferroelectric nanoparticles. This hybrid system exhibits a giant soft-memory effect. Here, spontaneous polarization of ferroelectric nanoparticles couples synergistically with the radially aligned BCP chains to create nanoscopic domains that can be rotated electromechanically and locked in space even after the removal of the applied electric field. The resulting non-volatile memory is several times larger than the non-functionalized sample and provides an insight into the role of non-covalent polymer functionalization. We also present the latest results from the dielectric and spectroscopic study of field assisted alignment of gold nanorods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the challenges to biomedical engineers proposed by researchers in neuroscience is brain machine interaction. The nervous system communicates by interpreting electrochemical signals, and implantable circuits make decisions in order to interact with the biological environment. It is well known that Parkinson’s disease is related to a deficit of dopamine (DA). Different methods has been employed to control dopamine concentration like magnetic or electrical stimulators or drugs. In this work was automatically controlled the neurotransmitter concentration since this is not currently employed. To do that, four systems were designed and developed: deep brain stimulation (DBS), transmagnetic stimulation (TMS), Infusion Pump Control (IPC) for drug delivery, and fast scan cyclic voltammetry (FSCV) (sensing circuits which detect varying concentrations of neurotransmitters like dopamine caused by these stimulations). Some softwares also were developed for data display and analysis in synchronously with current events in the experiments. This allowed the use of infusion pumps and their flexibility is such that DBS or TMS can be used in single mode and other stimulation techniques and combinations like lights, sounds, etc. The developed system allows to control automatically the concentration of DA. The resolution of the system is around 0.4 µmol/L with time correction of concentration adjustable between 1 and 90 seconds. The system allows controlling DA concentrations between 1 and 10 µmol/L, with an error about +/- 0.8 µmol/L. Although designed to control DA concentration, the system can be used to control, the concentration of other substances. It is proposed to continue the closed loop development with FSCV and DBS (or TMS, or infusion) using parkinsonian animals models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 3: Product-Service Systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicle (EV) batteries tend to have accelerated degradation due to high peak power and harsh charging/discharging cycles during acceleration and deceleration periods, particularly in urban driving conditions. An oversized energy storage system (ESS) can meet the high power demands; however, it suffers from increased size, volume and cost. In order to reduce the overall ESS size and extend battery cycle life, a battery-ultracapacitor (UC) hybrid energy storage system (HESS) has been considered as an alternative solution. In this work, we investigate the optimized configuration, design, and energy management of a battery-UC HESS. One of the major challenges in a HESS is to design an energy management controller for real-time implementation that can yield good power split performance. We present the methodologies and solutions to this problem in a battery-UC HESS with a DC-DC converter interfacing with the UC and the battery. In particular, a multi-objective optimization problem is formulated to optimize the power split in order to prolong the battery lifetime and to reduce the HESS power losses. This optimization problem is numerically solved for standard drive cycle datasets using Dynamic Programming (DP). Trained using the DP optimal results, an effective real-time implementation of the optimal power split is realized based on Neural Network (NN). This proposed online energy management controller is applied to a midsize EV model with a 360V/34kWh battery pack and a 270V/203Wh UC pack. The proposed online energy management controller effectively splits the load demand with high power efficiency and also effectively reduces the battery peak current. More importantly, a 38V-385Wh battery and a 16V-2.06Wh UC HESS hardware prototype and a real-time experiment platform has been developed. The real-time experiment results have successfully validated the real-time implementation feasibility and effectiveness of the real-time controller design for the battery-UC HESS. A battery State-of-Health (SoH) estimation model is developed as a performance metric to evaluate the battery cycle life extension effect. It is estimated that the proposed online energy management controller can extend the battery cycle life by over 60%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strawberries harvested for processing as frozen fruits are currently de-calyxed manually in the field. This process requires the removal of the stem cap with green leaves (i.e. the calyx) and incurs many disadvantages when performed by hand. Not only does it necessitate the need to maintain cutting tool sanitation, but it also increases labor time and exposure of the de-capped strawberries before in-plant processing. This leads to labor inefficiency and decreased harvest yield. By moving the calyx removal process from the fields to the processing plants, this new practice would reduce field labor and improve management and logistics, while increasing annual yield. As labor prices continue to increase, the strawberry industry has shown great interest in the development and implementation of an automated calyx removal system. In response, this dissertation describes the design, operation, and performance of a full-scale automatic vision-guided intelligent de-calyxing (AVID) prototype machine. The AVID machine utilizes commercially available equipment to produce a relatively low cost automated de-calyxing system that can be retrofitted into existing food processing facilities. This dissertation is broken up into five sections. The first two sections include a machine overview and a 12-week processing plant pilot study. Results of the pilot study indicate the AVID machine is able to de-calyx grade-1-with-cap conical strawberries at roughly 66 percent output weight yield at a throughput of 10,000 pounds per hour. The remaining three sections describe in detail the three main components of the machine: a strawberry loading and orientation conveyor, a machine vision system for calyx identification, and a synchronized multi-waterjet knife calyx removal system. In short, the loading system utilizes rotational energy to orient conical strawberries. The machine vision system determines cut locations through RGB real-time feature extraction. The high-speed multi-waterjet knife system uses direct drive actuation to locate 30,000 psi cutting streams to precise coordinates for calyx removal. Based on the observations and studies performed within this dissertation, the AVID machine is seen to be a viable option for automated high-throughput strawberry calyx removal. A summary of future tasks and further improvements is discussed at the end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tactile sensing is an important aspect of robotic systems, and enables safe, dexterous robot-environment interaction. The design and implementation of tactile sensors on robots has been a topic of research over the past 30 years, and current challenges include mechanically flexible “sensing skins”, high dynamic range (DR) sensing (i.e.: high force range and fine force resolution), multi-axis sensing, and integration between the sensors and robot. This dissertation focuses on addressing some of these challenges through a novel manufacturing process that incorporates conductive and dielectric elastomers in a reusable, multilength-scale mold, and new sensor designs for multi-axis sensing that improve force range without sacrificing resolution. A single taxel was integrated into a 1 degree of freedom robotic gripper for closed-loop slip detection. Manufacturing involved casting a composite silicone rubber, polydimethylsiloxane (PDMS) filled with conductive particles such as carbon nanotubes, into a mold to produce microscale flexible features on the order of 10s of microns. Molds were produced via microfabrication of silicon wafers, but were limited in sensing area and were costly. An improved technique was developed that produced molds of acrylic using a computer numerical controlled (CNC) milling machine. This maintained the ability to produce microscale features, and increased the sensing area while reducing costs. New sensing skins had features as small as 20 microns over an area as large as a human hand. Sensor architectures capable of sensing both shear and normal force sensing with high dynamic range were produced. Using this architecture, two sensing modalities were developed: a capacitive approach and a contact resistive approach. The capacitive approach demonstrated better dynamic range, while the contact resistive approach used simpler circuitry. Using the contact resistive approach, normal force range and resolution were 8,000 mN and 1,000 mN, respectively, and shear force range and resolution were 450 mN and 100 mN, respectively. Using the capacitive approach, normal force range and resolution were 10,000 mN and 100 mN, respectively, and shear force range and resolution were 1,500 mN and 50 mN, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slender rotating structures are used in many mechanical systems. These structures can suffer from undesired vibrations that can affect the components and safety of a system. Furthermore, since some these structures can operate in a harsh environment, installation and operation of sensors that are needed for closed-loop and collocated control schemes may not be feasible. Hence, the need for an open-loop non-collocated scheme for control of the dynamics of these structures. In this work, the effects of drive speed modulation on the dynamics of slender rotating structures are studied. Slender rotating structures are a type of mechanical rotating structures, whose length to diameter ratio is large. For these structures, the torsion mode natural frequencies can be low. In particular, for isotropic structures, the first few torsion mode frequencies can be of the same order as the first few bending mode frequencies. These situations can be conducive for energy transfer amongst bending and torsion modes. Scenarios with torsional vibrations experienced by rotating structures with continuous rotor-stator contact occur in many rotating mechanical systems. Drill strings used in the oil and gas industry are an example of rotating structures whose torsional vibrations can be deleterious to the components of the drilling system. As a novel approach to mitigate undesired vibrations, the effects of adding a sinusoidal excitation to the rotation speed of a drill string are studied. A portion of the drill string located within a borewell is considered and this rotating structure has been modeled as an extended Jeffcott rotor and a sinusoidal excitation has been added to the drive speed of the rotor. After constructing a three-degree-of-freedom model to capture lateral and torsional motions, the equations of motions are reduced to a single differential equation governing torsional vibrations during continuous stator contact. An approximate solution has been obtained by making use of the Method of Direct Partition of Motions with the governing torsional equation of motion. The results showed that for a rotor undergoing forward or backward whirling, the addition of sinusoidal excitation to the drive speed can cause an increase in the equivalent torsional stiffness, smooth the discontinuous friction force at contact, and reduce the regions of negative slope in the friction coefficient variation with respect to speed. Experiments with a scaled drill string apparatus have also been conducted and the experimental results show good agreement with the numerical results obtained from the developed models. These findings suggest that the extended Jeffcott rotordynamics model can be useful for studies of rotor dynamics in situations with continuous rotor-stator contact. Furthermore, the results obtained suggest that the drive speed modulation scheme can have value for attenuating drill-string vibrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional vehicles are creating pollution problems, global warming and the extinction of high density fuels. To address these problems, automotive companies and universities are researching on hybrid electric vehicles where two different power devices are used to propel a vehicle. This research studies the development and testing of a dynamic model for Prius 2010 Hybrid Synergy Drive (HSD), a power-split device. The device was modeled and integrated with a hybrid vehicle model. To add an electric only mode for vehicle propulsion, the hybrid synergy drive was modified by adding a clutch to carrier 1. The performance of the integrated vehicle model was tested with UDDS drive cycle using rule-based control strategy. The dSPACE Hardware-In-the-Loop (HIL) simulator was used for HIL simulation test. The HIL simulation result shows that the integration of developed HSD dynamic model with a hybrid vehicle model was successful. The HSD model was able to split power and isolate engine speed from vehicle speed in hybrid mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two key solutions to reduce the greenhouse gas emissions and increase the overall energy efficiency are to maximize the utilization of renewable energy resources (RERs) to generate energy for load consumption and to shift to low or zero emission plug-in electric vehicles (PEVs) for transportation. The present U.S. aging and overburdened power grid infrastructure is under a tremendous pressure to handle the issues involved in penetration of RERS and PEVs. The future power grid should be designed with for the effective utilization of distributed RERs and distributed generations to intelligently respond to varying customer demand including PEVs with high level of security, stability and reliability. This dissertation develops and verifies such a hybrid AC-DC power system. The system will operate in a distributed manner incorporating multiple components in both AC and DC styles and work in both grid-connected and islanding modes. ^ The verification was performed on a laboratory-based hybrid AC-DC power system testbed as hardware/software platform. In this system, RERs emulators together with their maximum power point tracking technology and power electronics converters were designed to test different energy harvesting algorithms. The Energy storage devices including lithium-ion batteries and ultra-capacitors were used to optimize the performance of the hybrid power system. A lithium-ion battery smart energy management system with thermal and state of charge self-balancing was proposed to protect the energy storage system. A grid connected DC PEVs parking garage emulator, with five lithium-ion batteries was also designed with the smart charging functions that can emulate the future vehicle-to-grid (V2G), vehicle-to-vehicle (V2V) and vehicle-to-house (V2H) services. This includes grid voltage and frequency regulations, spinning reserves, micro grid islanding detection and energy resource support. ^ The results show successful integration of the developed techniques for control and energy management of future hybrid AC-DC power systems with high penetration of RERs and PEVs.^