945 resultados para Effective number of parties


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological work carried out on the Antarctic and Magellan shelves since the first IBMANT conference held at the UMAG, Punta Arenas in 1997 is summarized to identify areas where progress has been made and others, where impor- tant gaps have remained in understanding past and present interaction between the Antarctic and the southern tip of South America. This information is complementary to a review on shallow-water work along the Scotia Arc (Barnes, 2005) and recent work done in the deep sea (Brandt and Hilbig, 2004). While principally referring to shipboard work in deeper water, above all during the recent international EASIZ and LAMPOS campaigns, relevant work from shore stations is also included. Six years after the first IBMANT symposium, significant progress has been made along the latitudinal gradient from the Magellan region to the high Antarctic in the fields of biodiversity, biogeography and community structure, life strategies and adaptations, the role of disturbance and its significance for biodiversity, and trophic coupling of the benthic realm with the water column and sea ice. A better understanding has developed of the role of evolutionary and ecological factors in shaping past and present-day environmental conditions, species composition and distribution, and ecosystem functioning. Furthermore, the science community engaged in unravelling Antarctic-Magellan interactions has advanced in methodological aspects such as new analytical approaches for comparing biodiversity derived from visual methods, growth and age determination, trophic modelling using stable isotope ratios, and molecular approaches for taxonomic and phylogenetic purposes. At the same time, much effort has been invested to complement the species inventory of the two adjacent regions. However, much work remains to be done to fill the numerous gaps. Some perspectives are outlined in this review, and sug- gestions are made where particular emphasis should be placed in future work, much of which will be developed in the frame of SCAR's EBA (Evolution and Biodiversity in the Antarctic) programme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of ice rafted debris (IRD) is an important parameter in glaciomarine sediments. A simple method is presented allowing the determination of the IRD-content by counting the gravel fraction of the X-radiographs which are generally taken during sarnpling. In comparison with sieve analyses corresponding values are obtained by both methods. However, more information can be made available in a shorter time by this method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminifera from 24 DSDP/ODP sites were investigated to assess their global horizontal and vertical distribution in the deep-sea environment at the end of the Cretaceous period. The samples analyzed are from the late Maastrichtian and within the planktic foraminiferal Abathomphus mayaroensis Zone from a wide range of oceans and paleolatitudes, including the low-latitude Sites 10 and 384 (Atlantic Ocean), 47, 171, 305, and 465 (Pacific Ocean), the mid-latitude Sites 20, 111, 356, 363, 516, 525, 527, 548, and 605 (Atlantic Ocean), 216, 217, and 758 (Indian Ocean), and the high-latitude Sites 208 (Pacific Ocean), 689,698,700,738 and 750 (Southern Ocean). Correspondence analysis, based on the 75 most common taxa, shows a clear biogeographic trend along the first correspondence axis by arranging the sites in paleolatitudinal order. The assemblages from the Tethyan Realm (i.e., low latitudes) are marked by abundant heavily calcified buliminids (such as Bulimina incisa, B. trinitatensis, B. velascoensis, and Reussella szajnochae) and Aragonia spp., whereas high-latitude faunas are characterized by abundant Alabamina creta, Gyroidinoides quadratus, and Pullenia coryelli. The results indicate that the faunas at low and high latitudes, respectively, were influenced by quite different environmental conditions. This is based on the much higher abundance of infaunal morphotypes at low and mid latitudes compared to high latitudes, suggesting that the biogeographic trend found in the data set coincides with the trophic regime at the various sites. The results also provide support for the hypothesis that postulates two simultaneous sources and mechanisms for deep-water formation during the Late Cretaceous, including warm, saline deep water produced by evaporation at low (equatorial) latitudes in contrast to the formation of cold deep waters at high (southern) latitudes.