952 resultados para Eddy Viscosity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyelectrolyte complex formation involving carboxymethylcellulose and quaternized poly(vinylpyridine) as the polyions has been studied using viscosity and u.v. spectroscopic methods. The influence of charge density and molecular weight of two polycations on the composition of the complex has been investigated at two different concentrations. The charge density of the polycation is found to have different influences on the composition at different concentrations. The molecular weight of the polycation and the location of the ionic site on the polycation do not show any effect on the composition. A drastic increase in the viscosity of the polyion mixture containing quaternized poly(2-vinylpyridine) in the non-stoichiometric ratio shows evidence for the existence of the soluble polyelectrolyte complex. The results are analysed on the basis of the relative extension of the polyelectrolyte chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shear alignment of an initially disordered lamellar phase is examined using lattice Boltzmann simulations of a mesoscopic model based on a free-energy functional for the concentration modulation. For a small shear cell of width 8 lambda, the qualitative features of the alignment process are strongly dependent on the Schmidt number Sc = nu/D (ratio of kinematic viscosity and mass diffusion coefficient). Here, lambda is the wavelength of the concentration modulation. At low Schmidt number, it is found that there is a significant initial increase in the viscosity, coinciding with the alignment of layers along the extensional axis, followed by a decrease at long times due to the alignment along the flow direction. At high Schmidt number, alignment takes place due to the breakage and reformation of layers because diffusion is slow compared to shear deformation; this results in faster alignment. The system size has a strong effect on the alignment process; perfect alignment takes place for a small systems of width 8 lambda and 16 lambda, while a larger system of width 32 lambda does not align completely even at long times. In the larger system, there appears to be a dynamical steady state in which the layers are not perfectly aligned-where there is a balance between the annealing of defects due to shear and the creation due to an instability of the aligned lamellar phase under shear. We observe two types of defect creation mechanisms: the buckling instability under dilation, which was reported earlier, as well as a second mechanism due to layer compression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the hydrodynamic properties of strongly coupled SU(N) Yang-Mills theory of the D1-brane at finite temperature and at a non-zero density of R-charge in the framework of gauge/gravity duality. The gravity dual description involves a charged black hole solution of an Einstein-Maxwell-dilaton system in 3 dimensions which is obtained by a consistent truncation of the spinning D1-brane in 10 dimensions. We evaluate thermal and electrical conductivity as well as the bulk viscosity as a function of the chemical potential conjugate to the R-charges of the D1-brane. We show that the ratio of bulk viscosity to entropy density is independent of the chemical potential and is equal to 1/4 pi. The thermal conductivity and bulk viscosity obey a relationship similar to the Wiedemann-Franz law. We show that at the boundary of thermodynamic stability, the charge diffusion mode becomes unstable and the transport coefficients exhibit critical behaviour. Our method for evaluating the transport coefficients relies on expressing the second order differential equations in terms of a first order equation which dictates the radial evolution of the transport coefficient. The radial evolution equations can be solved exactly for the transport coefficients of our interest. We observe that transport coefficients of the D1-brane theory are related to that of the M2-brane by an overall proportionality constant which sets the dimensions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-toluenesulfonic acid 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-tolenesulfonic acid, 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy (< EIS >) exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, an attempt is made to gain a better understanding of the breakage of low-viscosity drops in turbulent flows by determining the dynamics of deformation of an inviscid drop in response to a pressure variation acting on the drop surface. Known scaling relationships between wavenumbers and frequencies, and between pressure fluctuations and velocity fluctuations in the inertial subrange are used in characterizing the pressure fluctuation. The existence of a maximum stable drop diameter d(max) follows once scaling laws of turbulent flow are used to correlate the magnitude of the disruptive forces with the duration for which they act. Two undetermined dimensionless quantities, both of order unity, appear in the equations of continuity, motion, and the boundary conditions in terms of pressure fluctuations applied on the surface. One is a constant of proportionality relating root-mean-square values of pressure and velocity differences between two points separated by a distance l. The other is a Weber number based on turbulent stresses acting on the drop and the resisting stresses in the drop due to interfacial tension. The former is set equal to 1, and the latter is determined by studying the interaction of a drop of diameter equal to d(max) with a pressure fluctuation of length scale equal to the drop diameter. The model is then used to study the breakage of drops of diameter greater than d(max) and those with densities different from that of the suspending fluid. It is found that, at least during breakage of a drop of diameter greater than d(max) by interaction with a fluctuation of equal length scale, a satellite drop is always formed between two larger drops. When very large drops are broken by smaller-length-scale fluctuations, highly deformed shapes are produced suggesting the possibility of further fragmentation due to instabilities. The model predicts that as the dispersed-phase density increases, d(max) decreases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of combined convection from vertical surfaces in a porous medium saturated with a power-law type non-Newtonian fluid is investigated. The transformed conservation laws are solved numerically for the case of variable surface heat flux conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented. The viscosity index ranged from 0.5 to 2.0.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperbranched polyurethanes, with varying oligoethyleneoxy spacer segments between the branching points, have been synthesized by a one-pot approach starting from the appropriately designed carbonyl azide that incorporates the different spacer segments. The structures of monomers and polymers were confirmed by IR and H-1-NMR spectroscopy. The solution viscosity of the polymers suggested that they were of reasonably high molecular weight. Reversal of terminal functional groups was achieved by preparing the appropriate monohydroxy dicarbonyl azide monomer. The large number of terminal isocyanate groups at the chain ends of such hyperbranched macromolecules caused them to crosslink prior to its isolation. However, carrying out the polymerization in the presence of 1 equiv of a capping agent, such as an alcohol, resulted in soluble polymers with carbamate chain ends. Using a biphenyl-containing alcohol as a capping agent, we have also prepared novel hyperbranched perbranched polyurethanes with pendant mesogenic segments. These mesogen-containing polyurethanes, however, did not exhibit liquid crystallinity probably due to the wholly aromatic rigid polymer backbone. (C) 1996 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of the three-dimensional flow field entering and leaving a mixed flow pump of non-dimensional specific speed k = 1.89 [N-s = 100 r/min (metric)] are discussed as a function of flowrate. Flow reversal at inlet at reduced flows is seen to result in abnormally high total pressures in the casing region, but causes no noticeable discontinuities on the head-flow characteristics. Inlet prerotation is associated with the transport of angular momentum by the reversal eddy and begins with the initiation of flow reversal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the viscosity of a liquid increases rapidly in the supercooled regime, the nature of molecular relaxation can exhibit dynamics rather different from the fast dynamics observed in the normal regime. In this article, we present theoretical studies of solvation dynamics and orientational relaxation in slow liquids. As the local short-range correlations are important in the slow liquids, we have extended our previous theory to take into account the shea-range pair correlations between the polar solute and the dipolar solvent molecules. Application of the generalized theory To the study of solvation dynamics of amide systems gives nice agreement with the experimental results of Maroncelli and co-workers (J. Phys. Chem. 1990, 94, 4929). The theory also provides valuable insight into the orientational relaxation precesses in the viscous liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peristaltic motion of two immiscible viscous incompressible fluids in a circular tube is studied in pumping and copumping ranges under long-wavelength and low-Reynolds-number assumptions. The effect of the peripheral-layer viscosity on the time-averaged flux and the mechanical efficiency is studied. The formation and growth of the trapping zone in the core and the peripheral layer are explained. It is observed that the bolus volume in the peripheral layer increases with an increase in the viscosity ratio. The limits of the time-averaged flux (Q) over bar for trapping in the core are obtained. The trapping observed in the peripheral layer decreases in size with an increase in (Q) over bar but never disappears. The development of the complete trapping of the core fluid by the peripheral-layer fluid with an increase in the time-averaged flux is demonstrated. The effect of peripheral-layer viscosity on the reflux layer is investigated. It is also observed that the reflux occurs in the entire pumping range for all viscosity ratios and it is absent in the entire range of copumping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peristaltic transport of two fluids occupying the peripheral layer and the core in an elliptic tube is, investigated in elliptic cylindrical co-ordinate system, under long wavelength and low Reynolds number approximations. The effect of peripheral-layer viscosity on the flow rate and the frictional force for a slightly elliptic tube is discussed. The limiting results for the one-fluid model are obtained for different eccentricities of the undisturbed tube cross sections with the same area. As a result of non-uniformity of the peristaltic wave, two different amplitude ratios are defined and the time-averaged flux and mechanical efficiency are studied for different eccentricities. It is observed that the time-averaged flux is not affected significantly by the pressure drop when the eccentricity is large. For the peristaltic waves with same area variation, the pumping seems to improve with the eccentricity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tower data collected during the Monsoon-Trough Boundary Layer Experiment (MONTBLEX-90) have been analysed to understand the observed structure of the surface layer over an arid region (Jodhpur) and a moist region (Kharagpur) during active and weak phases of the 1990 southwest monsoon. Turbulent heat and momentum fluxes are estimated by the eddy correlation method using sonic data. The turbulent momentum flux at both Jodhpur and Kharagpur was larger when the winds were stronger, reaching a maximum of the order of 0.5 N m(-2) on 5 and 6 August when a low pressure system was located over the region. The heat flux at Jodhpur is high during weak monsoon days, the maximum being 450 W m(-2), whereas during active days the flux never exceeds 200 W m(-2). At Kharagpur, the flux does not vary significantly between active and weak monsoon days, the maximum in either phase being 160 W m(-2) At Jodhpur, there is significant contrast in the near-surface air temperature, being higher during weak monsoon days as compared to active days. Cloud cover did not vary significantly in both the regions. The turbulent heat flux variation at both the sites appears to be correlated mainly with soil mixture, and less sensitive to cloud cover.