959 resultados para Eckernfoerder Bay
Resumo:
The upper Bay of Fundy is a critical stopover site for Semipalmated Sandpipers (Calidris pusilla) during their fall migration. However, little is known about factors that influence selection of feeding and roosting sites by these birds, or the extent to which birds move between different sites during their time in the region. Using radio-telemetry, we studied movement patterns, examined habitat use, and tested hypotheses associated with factors influencing foraging and roost-site selection. Movements of radio-tagged sandpipers were tracked in the upper Bay of Fundy in August 2004 and 2005. In 2004, sandpipers from the Minas Basin, Nova Scotia and Chignecto Bay, New Brunswick and Nova Scotia, were tracked, and in 2005, sandpipers were tracked only in Chignecto Bay. Sandpipers were highly mobile in both the Minas Basin 2004 and Chignecto Bay 2005, making daily movements of up to 20 km between foraging and roosting sites, although very little movement was detected in Chignecto Bay in 2004. Migrating sandpipers appeared to select foraging sites based on relative safety, as measured by distance to cover, provided that these sites offered an adequate food supply. Similarly, roosting sandpipers preferred sites that were far from nearby trees that might offer cover to predators. This preference for safe sites became more apparent later in their stay in the Bay of Fundy, when birds were heavier and, therefore, possibly more vulnerable to predation. Semipalmated Sandpipers appear to be flexible during their time in the upper Bay of Fundy, displaying year-to-year and site-to-site variability in movement and mudflat usage. Therefore, multiple, synchronized population counts should be conducted at known roost sites in order to more accurately estimate Semipalmated Sandpiper abundance in this region. Furthermore, in a highly dynamic system where food can be variable, landscape features such as distance to cover may be important factors to consider when selecting candidate sites for shorebird conservation measures.
Resumo:
Across North America, Bald Eagle (Haliaeetus leucocephalus) populations appear to be recovering following bans of DDT. A limited number of studies from across North America have recorded a surplus of nonbreeding adult Bald Eagles in dense populations when optimal habitat and food become limited. Placentia Bay, Newfoundland is one of these. The area has one of the highest densities of Bald Eagles in eastern North America, and has recently experienced an increase in the proportion of nonbreeding adults within the population. We tested whether the observed Bald Eagle population trends in Placentia Bay, Newfoundland during the breeding seasons 1990-2009 are due to habitat saturation. We found no significant differences in habitat or food resource characteristics between occupied territories and pseudo-absence data or between nest sites with high vs. low nest activity/occupancy rates. Therefore there is no evidence for habitat saturation for Bald Eagles in Placentia Bay and alternative hypotheses for the high proportion of nonbreeding adults should be considered. The Newfoundland population provides an interesting case for examination because it did not historically appear to be affected by pollution. An understanding of Bald Eagle population dynamics in a relatively pristine area with a high density can be informative for restoration and conservation of Bald Eagle populations elsewhere.
Resumo:
This paper investigates the use of data assimilation in coastal area morphodynamic modelling using Morecambe Bay as a study site. A simple model of the bay has been enhanced with a data assimilation scheme to better predict large-scale changes in bathymetry observed in the bay over a 3-year period. The 2DH decoupled morphodynamic model developed for the work is described, as is the optimal interpolation scheme used to assimilate waterline observations into the model run. Each waterline was acquired from a SAR satellite image and is essentially a contour of the bathymetry at some level within the inter-tidal zone of the bay. For model parameters calibrated against validation observations, model performance is good, even without data assimilation. However the use of data assimilation successfully compensates for a particular failing of the model, and helps to keep the model bathymetry on track. It also improves the ability of the model to predict future bathymetry. Although the benefits of data assimilation are demonstrated using waterline observations, any observations of morphology could potentially be used. These results suggest that data assimilation should be considered for use in future coastal area morphodynamic models.
Resumo:
Tidal Flats are important examples of extensive areas of natural environment that remain relatively unaffected by man. Monitoring of tidal flats is required for a variety of purposes. Remote sensing has become an established technique for the measurement of topography over tidal flats. A further requirement is to measure topographic changes in order to measure sediment budgets. To date there have been few attempts to make quantitative estimates of morphological change over tidal flat areas. This paper illustrates the use of remote sensing to measure quantitative and qualitative changes in the tidal flats of Morecambe Bay during the relatively long period 1991–2007. An understanding of the patterns of sediment transport within the Bay is of considerable interest for coastal management and defence purposes. Tidal asymmetry is considered to be the dominant cause of morphological change in the Bay, with the higher currents associated with the flood tide being the main agency moulding the channel system. Quantitative changes were measured by comparing a Digital Elevation Model (DEM) of the intertidal zone formed using the waterline technique applied to satellite Synthetic Aperture Radar (SAR) images from 1991–1994, to a second DEM constructed from airborne laser altimetry data acquired in 2005. Qualitative changes were studied using additional SAR images acquired since 2003. A significant movement of sediment from below Mean Sea Level (MSL) to above MSL was detected by comparing the two Digital Elevation Models, though the proportion of this change that could be ascribed to seasonal effects was not clear. Between 1991 and 2004 there was a migration of the Ulverston channel of the river Leven north-east by about 5 km, followed by the development of a straighter channel to the west, leaving the previous channel decoupled from the river. This is thought to be due to independent tidal and fluvial forcing mechanisms acting on the channel. The results demonstrate the effectiveness of remote sensing for measurement of long-term morphological change in tidal flat areas. An alternative use of waterlines as partial bathymetry for assimilation into a morphodynamic model of the coastal zone is also discussed.
Resumo:
The well-known Quaternary section at Godrevy, west Cornwall has been often described during the past half century, however, a further section, about a kilometre to the south is considered for the first time since a brief mention at the beginning of the last century. This 200m long exposure rests upon a raised shore platform and consists of a basal raised beach and littoral sand, overlain by a local diamict revealing evidence of post-depositional frost disturbance and finally Holocene dune sand. It is proposed that this Strap Rock site be included within the general discussion of the Godrevy section.
Resumo:
This paper describes the implementation of a 3D variational (3D-Var) data assimilation scheme for a morphodynamic model applied to Morecambe Bay, UK. A simple decoupled hydrodynamic and sediment transport model is combined with a data assimilation scheme to investigate the ability of such methods to improve the accuracy of the predicted bathymetry. The inverse forecast error covariance matrix is modelled using a Laplacian approximation which is calibrated for the length scale parameter required. Calibration is also performed for the Soulsby-van Rijn sediment transport equations. The data used for assimilation purposes comprises waterlines derived from SAR imagery covering the entire period of the model run, and swath bathymetry data collected by a ship-borne survey for one date towards the end of the model run. A LiDAR survey of the entire bay carried out in November 2005 is used for validation purposes. The comparison of the predictive ability of the model alone with the model-forecast-assimilation system demonstrates that using data assimilation significantly improves the forecast skill. An investigation of the assimilation of the swath bathymetry as well as the waterlines demonstrates that the overall improvement is initially large, but decreases over time as the bathymetry evolves away from that observed by the survey. The result of combining the calibration runs into a pseudo-ensemble provides a higher skill score than for a single optimized model run. A brief comparison of the Optimal Interpolation assimilation method with the 3D-Var method shows that the two schemes give similar results.
Resumo:
The coexistence of a large number of phytoplankton species on a seemingly limited variety of resources is a classical problem in ecology, known as ‘the paradox of the plankton’. Strong fluctuations in species abundance due to the external factors or competitive interactions leading to oscillations, chaos and short-term equilibria have been cited so far to explain multi-species coexistence and biodiversity of phytoplankton. However, none of the explanations has been universally accepted. The qualitative view and statistical analysis of our field data establish two distinct roles of toxin-producing phytoplankton (TPP): toxin allelopathy weakens the interspecific competition among phytoplankton groups and the inhibition due to ingestion of toxic substances reduces the abundance of the grazer zooplankton. Structuring the overall plankton population as a combination of nontoxic phytoplankton (NTP), toxic phytoplankton, and zooplankton, here we offer a novel solution to the plankton paradox governed by the activity of TPP. We demonstrate our findings through qualitative analysis of our sample data followed by analysis of a mathematical model.
Resumo:
Digital imaging technologies enable a mastery of the visual that in recent mainstream cinema frequently manifests as certain kinds of spatial reach, orientation and motion. In such a context Michael Bay’s Transformers franchise can be framed as a digital re-tooling of a familiar fantasy of vehicular propulsion, US car culture writ large in digitally crafted spectacles of diegetic speed, the vehicular chase film ‘2.0’. Movement is central to these films, calling up Scott Bukatman’s observation that in spectacular visual media ‘movement has become more than a tool of bodily knowledge; it has become an end in itself’ (2003: 125). Not all movements and not all instances of vehicular propulsion are the same however. How might we evaluate what is at stake in a film’s assertion of movement as an end in itself, and the form that assertion takes, its articulations of diegetic velocity, corporeality, and spatial penetration? Deploying an attentiveness towards the specificity of aesthetic detail and affective impact in Bay’s delineation of movement, this essay suggests that the franchise poses questions about the relationship of human movement to machine movement that exceed their narrative basis. Identifying a persistent rotational trope in the franchise that in its audio-visual articulation combines oddly anachronistic elements (evoking the mechanical rather than the digital), the article argues that the films prioritise certain fantasies of transformation and spatial penetration, and certain modes of corporeality, as one response to contemporary debates about digital technologisation, sustainable energy, and cinematic spectacle. In this way the franchise also represents a particular moment in a more widely discernible preoccupation in contemporary cinema with what we might call a ‘rotational aesthetics’ of action, a machine movement made possible by the digital, but which invokes earlier histories and fantasies of animation, propulsion, mechanization and mechanization to particular ends.