996 resultados para Earth Day


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated sea-air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents seas were net sinks for atmospheric CO2, with integrated sea-air fluxes of -36 +/- 14 and -11 +/- 5 Tg C yr(-1), respectively, and the Kara Sea was a weak net CO2 source with an integrated sea-air flux of +2.2 +/- 1.4 TgC yr(-1). The combined integrated CO2 sea-air flux from all three was -45 +/- 18 TgC yr(-1). In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated sea-air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave an integrated sea-air flux change of +4.0 TgC in the Greenland Sea, +6.0 Tg C in the Barents Sea and +1.7 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 11% and 53 %, respectively, and increasing the weak Kara Sea source by 81 %. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink in the 2050s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un-supervised hyperspectral remote-sensing reflectance data (<15 km from the shore) were collected from a moving research vessel. Two different processing methods were compared. The results were similar to concurrent Aqua-MODIS and Suomi-NPP-VIIRS satellite data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (similar to 50 %) and their calcification can affect the atmosphere-to-ocean (air-sea) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO(2)). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998-2007), using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 +/- 104 000 km(2), which results in a net CaCO3 carbon (CaCO3-C) production of 0.14-1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production) can fluctuate inter-annually by -54/+81% about the mean value and is strongly correlated with the El Nino/Southern Oscillation (ENSO) climate oscillation index (r = 0.75, p < 0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO(2) and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155 %. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO(2) should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3-28 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean 5 carbonate pump (�50%) and their formation can affect the atmosphere-to-ocean (airsea) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO2). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998–2007), using Earth observation data from the Sea-viewing Wide 10 Field of view Sensor (SeaWiFS).We calculate the annual mean surface areal coverage of E. huxleyi in the North Atlantic to be 474 000±119 000km2 yr−1, which results in a net CaCO3 production of 0.62±0.15 Tg CaCO3 carbon per year. However, this surface coverage and net production can fluctuate by −54/+81% about these mean values and are strongly correlated with the El Ni˜no/Southern Oscillation (ENSO) climate os15 cillation index (r =0.75, p<0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO2 and thus decrease the localised sink of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly CO2 sink can reach 12 %. The maximum reduction of the monthly CO2 sink in the time series is 32 %. This work suggests that the high 20 variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered within modelling studies of the North Atlantic if we are to fully understand the variability of its air-to-sea CO2 flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, (1)H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global ocean phytoplankton biomass (C-phyto) and total particulate organic carbon (POC) stocks have largely been characterized from space using passive ocean color measurements. A space-based light detection and ranging (lidar) system can provide valuable complementary observations for C-phyto and POC assessments, with benefits including day-night sampling, observations through absorbing aerosols and thin cloud layers, and capabilities for vertical profiling through the water column. Here we use measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to quantify global C-phyto and POC from retrievals of subsurface particulate backscatter coefficients (b(bp)). CALIOP b(bp) data compare favorably with airborne, ship-based, and passive ocean data and yield global average mixed-layer standing stocks of 0.44 Pg C for C-phyto and 1.9 Pg for POC. CALIOP-based C-phyto and POC data exhibit global distributions and seasonal variations consistent with ocean plankton ecology. Our findings support the use of spaceborne lidar measurements for advancing understanding of global plankton systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used coincident Envisat RA2 and AATSR temperature and wind speed data from 2008/2009 to calculate the global net sea-air flux of dimethyl sulfide (DMS), which we estimate to be 19.6 Tg S a21. Our monthly flux calculations are compared to open ocean eddy correlation measurements of DMS flux from 10 recent cruises, with a root mean square difference of 3.1 lmol m22 day21. In a sensitivity analysis, we varied temperature, salinity, surface wind speed, and aqueous DMS concentration, using fixed global changes as well as CMIP5 model output. The range of DMS flux in future climate scenarios is discussed. The CMIP5 model predicts a reduction in surface wind speed and we estimate that this will decrease the global annual sea-air flux of DMS by 22% over 25 years. Concurrent changes in temperature, salinity, and DMS concentration increase the global flux by much smaller amounts. The net effect of all CMIP5 modelled 25 year predictions was a 19% reduction in global DMS flux. 25 year DMS concentration changes had significant regional effects, some positive (Southern Ocean, North Atlantic, Northwest Pacific) and some negative (isolated regions along the Equator and in the Indian Ocean). Using satellite-detected coverage of coccolithophore blooms, our estimate of their contribution to North Atlantic DMS emissions suggests that the coccolithophores contribute only a small percentage of the North Atlantic annual flux estimate, but may be more important in the summertime and in the northeast Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008–2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas’ ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton’s exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change arising from complex combinations of multiple physical drivers, including changes in mixing, circulation and temperature, which act both locally and non-locally through advection.