957 resultados para EXTRACELLULAR BIOSYNTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term oxylipin is applied to the generation of oxygenated products of polyunsaturated fatty acids that can arise either through non-enzymatic or enzymatic processes generating a complex array of products, including alcohols, aldehydes, ketones, acids and hydrocarbon gases. The biosynthetic origin of these products has revealed an array of enzymes involved in their formation and more recently a radical pathway. These include lipoxygenases and α-dioxygenase that insert both oxygen atoms in to the acyl chain to initiate the pathways, to specialised P450 monooxygenases that are responsible for their downstream processing. This latter group include enzymes at the branch points such as allene oxide synthase, leading to jasmonate signalling, hydroperoxide lyase, responsible for generating pathogen/pest defensive volatiles and divinyl ether synthases and peroxygenases involved in the formation of antimicrobial compounds. The complexity of the products generated raises significant challenges for their rapid identification and quantification using metabolic screening methods. Here the current developments in oxylipin metabolism are reviewed together with the emerging technologies required to expand this important field of research that underpins advances in plant-pest/pathogen interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As an extracellular second messenger, nitric oxide (NO) mediates the modification of proteins through nitrosylation of cysteine andtyrosine residues. Tissue Transglutaminase (TG2) is a Ca2+ activated, sulfhydryl rich protein with 18 free cysteine residues, which catalyzes ε-(γ glutamyl)lysine crosslink between extracellular and intracellular proteins. NO can nitrosylate up to 15 of the cysteine residues in TG2, leading to the irreversible inactivation of the enzyme activity. The interplay between these two agents was revealed for the first time by our study showing that NO inhibited the TG2-induced transcriptional activation of TGFb1and extracellular matrix (ECM) protein synthesis by nitrosylating TG2 in an inactive confirmation with inert catalytic activity. However, nitrosylated TG2 was still able to serve as a novel cell adhesion protein. In the light of our previous findings, in this study we aim to elucidate the NO modified function of TG2 in cell migration using an in vitro model mimicking the tissue matrix remodeling phases of wound healing. Using transfected fibroblasts expressing TG2 under the control of the tetracycline-off promoter, we demonstrate that upregulation of TG2 expression and activity inhibited the cell migration through the activation of TGFβ1. Increased TG2 activity led to arise in the biosynthesis and activity of the gelatinases, MMP-2 andMMP-9, while decreasing the biosynthesis and activity of the col-lagenases MMP-1a and MMP-13. NO donor S-Nitroso-N-acetyl-penicillamine (SNAP) treatment relieved the TG2 obstructed-cellmigration by blocking the TG2 enzyme activity. In addition,decrease in TG2 activity due to nitrosylation led to an inhibition of TGFβ1, which in turn affected the pattern of MMP activation. Recent evidence suggests that, once in complex with fibronectin in the ECM, TG2 can interact with syndecan-4 or integrinβ-1and regulate the cell adhesion. In the other part of this study, the possible role of nitrosylated TG2 on the regulation of cell migration during wound healing was investigated with respect to its interactions with integrin β1 (ITGβ1) and syndecan-4 (SDC4). Treatment with TG2 inhibitor Z-DON resulted in a 50% decrease in the TG2 interaction with ITGB1 and SDC4, while increasing concentrations of SNAP firstly led to a substantial decrease and then completely abolished the TG2/ITGβ1 and TG2/SDC4 complex formation on the cell surface. Taken together, data obtained from this study suggests that nitrosylation of TG2 leads to a change not only in the binding partners of TG2 on cell surface but also in TGFβ1-dependent MMP activation, which give rise to an increase in the migration potential of fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems. © 2010 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyketides derived from dinoflagellates are among the most complex and unique structures identified to date. The carbon framework of all polyketides is assembled by a polyketide synthase (PKS). No studies of the biosynthesis of dinoflagellate derived polyketides at the genomic level have been reported to date. Nine strains representing seven different species of dinoflagellates were screened for the presence of type I and type II polyketide synthases (PKS) by PCR and RT-PCR. Seven of the nine strains yielded products that were homologous with known and putative type I polyketide synthases. In each case, the presence of a PKS gene was correlated with the presence of bacteria in the cultures as identified by amplification of the bacterial 16S rRNA gene. However, residual phylogenetic signals, resistance to methylation sensitive restriction enzymes and the lack of hybridization to bacterial isolates support a dinoflagellate origin for most of these genes. ^ A more detailed analysis of Karenia brevis, a toxic marine dinoflagellate endemic to the Gulf of Mexico, also supports the hypothesis that dinoflagellates have polyketide synthase genes. Blooms of this harmful alga cause fish kills, marine mammal mortalities and neurotoxic shellfish poisonings. These harmful effects are attributed to a suite of polyketide secondary metabolites known as the brevetoxins. PKS encoding genes amplified from K. brevis culture were found to be similar to PKS genes from the closely related protist, Cryptosporidium parvum. This suggested that these genes originate from the dinoflagellate. However, K. brevis has not been grown axenically. The associated bacteria might be the source of the toxins or the PKS genes. This dissertation reports the localization of these PKS encoding genes by a combination of flow cytometry/PCR and fluorescence in situ hybridization (FISH). Two genes localized exclusively to K. brevis cells while a third localized to both K. brevis and associated bacteria. While these genes have not yet been linked to toxin production, the work describes the first definitive evidence of resident PKS genes in any dinoflagellate. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pahayokolides A-D are cytotoxic cyclic polypeptides produced by the freshwater cyanobacterium Lyngbya sp. strain 15-2 that possess an unusual β-amino acid, 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu). The absolute configuration of pahayokolides A-D was determined using advanced Marfey’s method. It was also confirmed that a pendant N-acetyl- N-methyl leucine moiety in pahayokolide A was absent in pahayokolides B and pahayokolides C-D were conformers of pahayokolide A. Feeding experiments indicated that the biosynthesis of the Athmu sidechain arises from leucine or α-ketoisovalerate, however could not be further extended by three rounds of condensation with malonate units. Putative four peptide and one unique polyketide synthetases in Lyngbya sp. strain 15-2 were identified by using a PCR method and degenerate primers derived from conserved core sequences of known NRPSs and PKSs. Identification of one unique KS domain conflicted with the logic rule that the long side chain of Athmu was assembled by three rounds of ketide extensions if PKSs were involved. A gene cluster (pah) encoding a peptide synthetase putatively producing pahayokolide was cloned, partially sequenced and characterized. Seven modules of the non-ribosomal peptide synthetase (NRPS) were identified. Ten additional opening reading frames (ORFs) were found, responsible for peptide resistance, transport and degradation. Although the predicted substrate specificities of NRPS agreed with the structure of pahayokolide A partially, the disagreement could be explained. However, no PKS gene was found in the pah gene cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are photosynthetic prokaryotes that can be found in freshwater and marine environments as well as in soil. These organisms produce a variety of different biologically active compounds exhibiting anti-bacterial, anti-fungal and anti-cancer properties among others. In this study, cyanobacterial isolates were screened for their ability to produce extracellular antibacterial products. Cyanobacteria were isolated from fresh water and soil samples collected in the Pembroke Pines, FL area. Twenty- seven strains of cyanobacteria were isolated belonging to the following genera: Limnothrix, Nostoc, Fischerella, Anabaena, Pseudoanabaena, Lyngbya, Leptolyngbya, Tychonema, and Calothrix. Individual strains were grown in liquid culture in laboratory conditions. Following 14-day cultivation, the culture liquid was filtered and tested for activity against the following bacteria: Escherichia coli, Bacillus megatarium, Staphylococcus aureus, and Micrococcus luteus. Among all genera of cyanobacterial strains tested, Fischerella exhibited the greatest inhibitory activity. An attempt was made to isolate the active compound from the culture liquid of the active strains. Lipophilic extracts from culture liquid were obtained from three selected Fischerella strains. The extracts proved to have varying levels of activity against the tested bacteria. Inhibitory activity from all three Fischerella strains was detected against B. megatarium and M luteus. The only strain that was active against S. aureus was Fischerella sp. 114-12 while none of the extracts showed activity against E. coli. This kind of screening has potential pharmaceutical and agricultural benefits, including possible discovery of novel antibiotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pahayokolides A-D are cytotoxic cyclic polypeptides produced by the freshwater cyanobacterium Lyngbya sp. strain 15-2 that possess an unusual β-amino acid, 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu). The absolute configuration of pahayokolides A-D was determined using advanced Marfey’s method. It was also confirmed that a pendant N-acetyl-N-methyl leucine moiety in pahayokolide A was absent in pahayokolides B and pahayokolides C-D were conformers of pahayokolide A. Feeding experiments indicated that the biosynthesis of the Athmu sidechain arises from leucine or α-ketoisovalerate, however could not be further extended by three rounds of condensation with malonate units. Putative four peptide and one unique polyketide synthetases in Lyngbya sp. strain 15-2 were identified by using a PCR method and degenerate primers derived from conserved core sequences of known NRPSs and PKSs. Identification of one unique KS domain conflicted with the logic rule that the long side chain of Athmu was assembled by three rounds of ketide extensions if PKSs were involved. A gene cluster (pah) encoding a peptide synthetase putatively producing pahayokolide was cloned, partially sequenced and characterized. Seven modules of the non-ribosomal peptide synthetase (NRPS) were identified. Ten additional opening reading frames (ORFs) were found, responsible for peptide resistance, transport and degradation. Although the predicted substrate specificities of NRPS agreed with the structure of pahayokolide A partially, the disagreement could be explained. However, no PKS gene was found in the pah gene cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgments Y.Y. acknowledges the financial support from “973” Program (2012CB721006) and National Natural Science Foundation of China (31570033). R.E., K.K., H.D., and M.J. acknowledge the financial support of the Leverhulme Trust-Royal Society Africa Award (AA090088).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary vesicoureteral reflux (VUR) is a common pediatric condition due to a developmental defect in the ureterovesical junction. The prevalence of VUR among individuals with connective tissue disorders, as well as the importance of the ureter and bladder wall musculature for the anti-reflux mechanism, suggest that defects in the extracellular matrix (ECM) within the ureterovesical junction may result in VUR. This review will discuss the function of the smooth muscle and its supporting ECM microenvironment with respect to VUR, and explore the association of VUR with mutations in ECM-related genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the extracellular matrix (ECM) and mechanotransduction as an important signaling factor in the human uterus is just beginning to be appreciated. The ECM is not only the substance that surrounds cells, but ECM stiffness will either compress cells or stretch them resulting in signals converted into chemical changes within the cell, depending on the amount of collagen, cross-linking, and hydration, as well as other ECM components. In this review we present evidence that the stiffness of fibroid tissue has a direct effect on the growth of the tumor through the induction of fibrosis. Fibrosis has two characteristics: (1) resistance to apoptosis leading to the persistence of cells and (2) secretion of collagen and other components of the ECM such a proteoglycans by those cells leading to abundant disposition of highly cross-linked, disoriented, and often widely dispersed collagen fibrils. Fibrosis affects cell growth by mechanotransduction, the dynamic signaling system whereby mechanical forces initiate chemical signaling in cells. Data indicate that the structurally disordered and abnormally formed ECM of uterine fibroids contributes to fibroid formation and growth. An appreciation of the critical role of ECM stiffness to fibroid growth may lead to new strategies for treatment of this common disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification impacts fish and other marine species through increased seawater PCO2 levels (hypercapnia). Knowledge of the physiological mechanisms mediating effects in various tissues of fish is incomplete. Here we tested the effects of extracellular hypercapnia and acidosis on energy metabolism of gill and liver cells of Atlantic cod. Exposure media mimicked blood conditions in vivo, either during normo- or hypercapnia and at control or acidic extracellular pH (pHe). We determined metabolic rate and energy expenditure for protein biosynthesis, Na+/K+-ATPase and H+-ATPase and considered nutrition status by measurements of metabolic rate and protein biosynthesis in media with and without free amino acids (FAA). Addition of FAA stimulated hepatic but not branchial oxygen consumption. Normo- and hypercapnic acidosis as well as hypercapnia at control pHe depressed metabolic stimulation of hepatocytes. In gill cells, acidosis depressed respiration independent of PCO2 and FAA levels. For both cell types, depressed respiration was not correlated with the same reduction in energy allocated to protein biosynthesis or Na+/K+-ATPase. Hepatic energy expenditure for protein synthesis and Na+/K+- ATPase was even elevated at acidic compared to control pHe suggesting increased costs for ion regulation and cel- lular reorganization. Hypercapnia at control pHe strongly reduced oxygen demand of branchial Na+/K+-ATPase with a similar trend for H+-ATPase. We conclude that extracellular acidosis triggers metabolic depression in gill and metabolically stimulated liver cells. Additionally, hypercapnia itself seems to limit capacities for metabolic usage of amino acids in liver cells while it decreases the use and costs of ion regulatory ATPases in gill cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 µatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 µatm). Boron isotopes (delta11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean delta11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Particulate matter has been shown to stimulate the innate immune system and induce acute inflammation. Therefore, while nanotechnology has the potential to provide therapeutic formulations with improved efficacy, there are concerns such pharmaceutical preparations could induce unwanted inflammatory side effects. Accordingly, we aim to examine the utility of using the proteolytic activity signatures of cysteine proteases, caspase 1 and cathepsin S (CTSS), as biomarkers to assess particulate-induced inflammation.

METHODS: Primary peritoneal macrophages and bone marrow-derived macrophages from C57BL/6 mice and ctss(-/-) mice were exposed to micro- and nanoparticulates and also the lysosomotropic agent, L-leucyl-L-leucine methyl ester (LLOME). ELISA and immunoblot analyses were used to measure the IL-1β response in cells, generated by lysosomal rupture. Affinity-binding probes (ABPs), which irreversibly bind to the active site thiol of cysteine proteases, were then used to detect active caspase 1 and CTSS following lysosomal rupture. Reporter substrates were also used to quantify the proteolytic activity of these enzymes, as measured by substrate turnover.

RESULTS: We demonstrate that exposure to silica, alum and polystyrene particulates induces IL-1β release from macrophages, through lysosomal destabilization. IL-1β secretion positively correlated with an increase in the proteolytic activity signatures of intracellular caspase 1 and extracellular CTSS, which were detected using ABPs and reporter substrates. Interestingly IL-1β release was significantly reduced in primary macrophages from ctss(-/-) mice.

CONCLUSIONS: This study supports the emerging significance of CTSS as a regulator of the innate immune response, highlighting its role in regulating IL-1β release. Crucially, the results demonstrate the utility of intracellular caspase 1 and extracellular CTSS proteolytic activities as surrogate biomarkers of lysosomal rupture and acute inflammation. In the future, activity-based detection of these enzymes may prove useful for the real-time assessment of particle-induced inflammation and toxicity assessment during the development of nanotherapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the impact of extracellular matrix sub-types and mechanical stretch on cardiac fibroblast activity is required to help unravel the pathophysiology of myocardial fibrotic diseases. Therefore, the purpose of this study was to investigate pro-fibrotic responses of primary human cardiac fibroblast cells exposed to different extracellular matrix components, including collagen sub-types I, III, IV, VI and laminin. The impact of mechanical cyclical stretch and treatment with transforming growth factor beta 1 (TGFβ1) on collagen 1, collagen 3 and alpha smooth muscle actin mRNA expression on different matrices was assessed using quantitative real-time PCR. Our results revealed that all of the matrices studied not only affected the expression of pro-fibrotic genes in primary human cardiac fibroblast cells at rest but also affected their response to TGFβ1. In addition, differential cellular responses to mechanical cyclical stretch were observed depending on the type of matrix the cells were adhered to. These findings may give insight into the impact of selective pathological deposition of extracellular matrix proteins within different disease states and how these could impact the fibrotic environment.