977 resultados para ESCHERICHIA-COLI INFECTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amperometric electrodeposition has been used to obtain uniform, conductive, and repeatable polyaniline (PANi) thin films for use in nano scaled biochemical sensors. This report describes the characterization of these films. Techniques such as ellipsometry were used to test repeatability of the deposition and the uniformity of the deposited thin films. Raman spectroscopy was utilized to confirm the composition of the deposited PANi thin films. Fluorescence microscopy was used to determine the immobilization of antibodies to the PANi thin films using biotin-avidin interactions, as well as the density of active binding sites. Ellipsometry results demonstrated that biomolecules could be immobilized on PANi films as thin as 9nm. Evidence from the Raman spectroscopy demonstrated the conductive nature of the PANi films. The fluorescence microscopy demonstrated that antibodies could be immobilized on PANi films, although the experiment also demonstrated a low density of binding sites. The characterization demonstrates the utility of the PANi thin films as a conductive interface between the inorganic sensor platform and biochemical molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesion is the first step in the pathogenesis of enterotoxigenic Escherichia coli infections. The genes encoding the most prevalent adhesion factors CFA/I, CS3 and CS6 were cloned into Vibrio cholerae strain CVD 103-HgR and expression of fimbriae was investigated in wildtype and recombinant strains by transmission electron microscopy in conjunction with immunolabelling and negative staining. Negative staining was effective in revealing CFA/I and CS3, but not CS6. Although morphology of fimbriae differed between wildtype and recombinant strains, corresponding surface antigens were recognized by specific antibodies. The present study provides evidence that ETEC-specific fimbriae can adequately be expressed in an attenuated V. cholerae vaccine strain and that immunoelectron microscopy is a critical tool to validate the surface expression of antigens in view of their possible suitability for recombinant vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: In order to create a suitable model for high-throughput drug screening, a Giardia lamblia WB C6 strain expressing Escherichia coli glucuronidase A (GusA) was created and tested with respect to susceptibility to the anti-giardial drugs nitazoxanide and metronidazole. METHODS: GusA, a well-established reporter gene in other systems, was cloned into the vector pPacVInteg allowing stable expression in G. lamblia under control of the promoter from the glutamate dehydrogenase (gdh) gene. The resulting transgenic strain was compared with the wild-type strain in a vitality assay, characterized with respect to susceptibility to nitazoxanide, metronidazole and -- as assessed in a 96-well plate format -- to a panel of 15 other compounds to be tested for anti-giardial activity. RESULTS: GusA was stably expressed in G. lamblia. Using a simple glucuronidase assay protocol, drug efficacy tests yielded results similar to those from cell counting. CONCLUSIONS: G. lamblia WB C6 GusA is a suitable tool for high-throughput anti-giardial drug screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forty Escherichia coli strains isolated primarily from neonatal meningitis, urinary tract infections and feces were screened for the presence of virulence genes with a newly developed microarray on the array tube format. A total of 32 gene probes specific for extraintestinal as well as intestinal E. coli pathotypes were included. Eighty-eight percent of the analyzed strains were positive for the K1-specific probe on the microarray and could be confirmed with a specific antiserum against the K1 capsular polysaccharide. The gene for the hemin receptor ChuA was predominantly found in 95% of strains. Other virulence genes associated with K1 and related strains were P, S, and F1C fimbriae specific for extraintestinal E. coli, the genes for aerobactin, the alpha-hemolysin and the cytotoxic necrotizing factor. In two strains, the O157-specific catalase gene and the gene for the low-molecular-weight heat-stable toxin AstA were detected, respectively. A total of 19 different virulence gene patterns were observed. No correlation was observed between specific virulence gene patterns and a clinical outcome. The data indicate that virulence genes typical of extraintestinal E. coli are predominantly present in K1 strains. Nevertheless, some of them can carry virulence genes known to be characteristic of intestinal E. coli. The distribution and combination of virulence genes show that K1 isolates constitute a heterogeneous group of E. coli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a microarray based broad-range screening technique for Escherichia coli virulence typing. Gene probes were amplified by PCR from a plasmid bank of characterised E. coli virulence genes and were spotted onto a glass slide to form an array of capture probes. Genomic DNA from E. coli strains which were to be tested for the presence of these virulence gene sequences was labelled with fluorescent cyanine dyes by random amplification and then hybridised against the array of probes. The hybridisation, washing and data analysis conditions were optimised for glass slides, and the applicability of the method for identifying the presence of the virulence genes was determined using reference strains and clinical isolates. It was found to be a sensitive screening method for detecting virulence genes, and a powerful tool for determining the pathotype of E. coli. It will be possible to expand and automate this microarray technique to make it suitable for rapid and reliable diagnostic screening of bacterial isolates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The widespread species Escherichia coli includes a broad variety of different types, ranging from highly pathogenic strains causing worldwide outbreaks of severe disease to avirulent isolates which are part of the normal intestinal flora or which are well characterized and safe laboratory strains. The pathogenicity of a given E. coli strain is mainly determined by specific virulence factors which include adhesins, invasins, toxins and capsule. They are often organized in large genetic blocks either on the chromosome ('pathogenicity islands'), on large plasmids or on phages and can be transmitted horizontally between strains. In this review we summarize the current knowledge of the virulence attributes which determine the pathogenic potential of E. coli strains and the methodology available to assess the virulence of E. coli isolates. We also focus on a recently developed procedure based on a broad-range detection system for E. coli-specific virulence genes that makes it possible to determine the potential pathogenicity and its nature in E. coli strains from various sources. This makes it possible to determine the pathotype of E. coli strains in medical diagnostics, to assess the virulence and health risks of E. coli contaminating water, food and the environment and to study potential reservoirs of virulence genes which might contribute to the emergence of new forms of pathogenic E. coli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on Directive (EC) No 99/2003, monitoring programs on the development of antimicrobial resistance in bacteria from livestock are implemented in many European countries. The aim of the present study was (i) to establish comprehensive baseline data on the antimicrobial resistance situation in Escherichia coli isolates obtained from healthy pigs (pooled fecal samples) originating from 60 Swiss pig-breeding farms, and (ii) to analyze differences in the resistance frequency between Escherichia coli isolates from weaned pigs and sows. Susceptibility testing (disc diffusion method) was performed on 429 isolates from weaned pigs and 431 isolates from sows. Overall, 17.7% of the isolates from weaned pigs and 22.5% of the Escherichia coli isolates from sows were susceptible to all antibiotics tested. Low resistance prevalence was found for amoxicillin, amoxicillin/clavulanic acid, ampicillin, cefquinome, ciprofloxacin, colistin, florfenicol, and gentamicin. The most frequently found resistances were against streptomycin (60.6% of the isolates from weaners and 64.3% of the isolates from sows), sulfonamide (51.5% and 26.9%), tetracycline (35.2% and 22.0%), and trimethoprim (27.5% and 11.1%). With exception of colistin, most resistances were found for those antibiotics commonly used on the farms. Except for ciprofloxacin and streptomycin, isolates from weaned pigs showed higher resistance prevalence than those from sows. This difference was significant for cefquinome, florfenicol, sulfonamide, tetracycline, and trimethoprim (p<0.05).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Resistance to extended-spectrum cephalosporins (ESCs) in Escherichia coli can be due to the production of ESBLs, plasmid-mediated AmpCs (pAmpCs) or chromosomal AmpCs (cAmpCs). Information regarding type and prevalence of β-lactamases, clonal relations and plasmids associated with the bla genes for ESC-R E. coli (ESC-R-Ec) detected in Switzerland is lacking. Moreover, data focusing on patients referred to the specialized outpatient clinics (SOCs) are needed. METHODS We analysed 611 unique E. coli isolated during September-December 2011. ESC-R-Ec were studied with microarrays, PCR/DNA sequencing for blaESBLs, blapAmpCs, promoter region of blacAmpC, IS elements, plasmid incompatibility group, and also implementing transformation, aIEF, rep-PCR and MLST. RESULTS The highest resistance rates were observed in the SOCs, whereas those in the hospital and community were lower (e.g. quinolone resistance of 22.6%, 17.2% and 9.0%, respectively; P = 0.003 for SOCs versus community). The prevalence of ESC-R-Ec in the three settings was 5.3% (n = 11), 7.8% (n = 22) and 5.7% (n = 7), respectively. Thirty isolates produced CTX-M ESBLs (14 were CTX-M-15), 5 produced CMY-2 pAmpC and 5 hyper-expressed cAmpCs due to promoter mutations. Fourteen isolates were of sequence type 131 (ST131; 10 with CTX-M-15). blaCTX-M and blaCMY-2 were associated with an intact or truncated ISEcp1 and were mainly carried by IncF, IncFII and IncI1plasmids. CONCLUSIONS ST131 producing CTX-M-15 is the predominant clone. The prevalence of ESC-R-Ec (overall 6.5%) is low, but an unusual relatively high frequency of AmpC producers (25%) was noted. The presence of ESC-R-Ec in the SOCs and their potential ability to be exchanged between hospital and community should be taken into serious consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing trends for invasive infections with extended-spectrum cephalosporin-resistant (ESC-R) Enterobacteriaceae have been described in many countries worldwide. However, data on the rates of ESC-R isolates in non-invasive infections and in the outpatient setting are scarce. We used a laboratory-based nationwide surveillance system to compare temporal trends of ESC-R rates in Escherichia coli and Klebsiella pneumoniae for in- and outpatients in Switzerland. Our data showed a significant increase in ESC-R rates from 1% to 5.8% in E. coli (p<0.001) and from 1.1% to 4.4% in K. pneumoniae (p=0.002) during an eight-year period (2004–2011). For E. coli, the increase was significantly higher in inpatients (from 1.2% to 6.6%), in patients residing in eastern Switzerland (from 1.0% to 6.2%), in patients older than 45 years (from 1.2% to 6.7%), and in male patients (from 1.2% to 8.1%). While the increase in inpatients was linear (p<0.001) for E. coli, the increase of ESC R K. pneumoniae isolates was the result of multiple outbreaks in several institutions. Notably, an increasing proportion of ESC-R E. coli was co-resistant to both trimethoprim-sulfamethoxazole and quinolones (42% in 2004 to 49.1% in 2011, p=0.009), further limiting the available oral therapeutic options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When Escherichia coli was grown in the presence of tungstate, inactive forms of two molybdoenzymes, nitrate reductase and formate dehydrogenase, accumulated and were converted to their active forms upon incubation of cell suspensions with molybdate and chloramphenicol. The conversion to the active enzymes did not occur in cell extracts. When incubated with [(99)Mo]molybdate and chloramphenicol, the tungstate-grown cells incorporated (99)Mo into protein components which were released from membranes by procedures used to release nitrate reductase and formate dehydrogenase and which migrated with these activities on polyacrylamide gels. Although neither activity was formed during incubation of the crude extract with molybdate, (99)Mo was incorporated into protein components which were released from the membrane fraction under the same conditions and were similar to the active enzymes in their electrophoretic properties. The in vitro incorporation of (99)Mo occurred specifically into these components and was equal to or greater than the amount incorporated in vivo under the same conditions. Molybdenum in preformed, active nitrate reductase and formate dehydrogenase did not exchange with [(99)Mo]molybdate, demonstrating that the observed incorporation depended on the demolybdo forms of the enzymes. We conclude that molybdate may be incorporated into the demolybdo forms both in vivo and in vitro; some unknown additional factor or step, required for active enzyme formation, occurs in vivo but not in vitro under the conditions employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell division or cytokinesis is one of the most fundamental processes in biology and is essential for the propagation of all living species. In Escherichia coli, cell division occurs by ingrowth of the membrane envelope at the cell center and is orchestrated by the FtsZ protein. FtsZ self-assembles into linear protofilaments in a GTP dependent manner to form a cytoskeletal scaffold called the Z-ring. The Z-ring provides the framework for the assembly of the division apparatus and determines the site of cytokinesis. The total amount of FtsZ molecules in a cell significantly exceeds the concentration required for Z-ring formation. Hence, Z-ring formation must be highly regulated, both temporally and spatially. In particular, the assembly of Z-rings at the cell poles and over chromosomal DNA must be prevented. These inhibitory roles are played by two key regulatory systems called the Min and nucleoid occlusion (NO) systems. In E. coli, Min proteins oscillate from pole to pole; the net result of this oscillatory process is the formation of a zone of FtsZ inhibition at the cell poles. However, the replicated nucleoid DNA near the midcell must also be protected from bisection by the Z-ring which is ensured by NO. A protein called SlmA was shown to be the effector of NO in E. coli. SlmA was identified in a screen designed to isolate mutations that were lethal in the absence of Min, hence the name SlmA (synthetic lethal with a defective Min system). Furthers SlmA was shown to bind DNA and localize to the nucleoid fraction of the cell. Additionally, light scattering experiments suggested that SlmA interacts with FtsZ-GTP and alters its polymerization properties. Here we describe studies that reveal the molecular mechanism by which SlmA mediates NO in E. coli. Specifically, we determined the crystal structure of SlmA, identified its DNA binding site specificity, and mapped its binding sites on the E. coli chromosome by chromatin immuno-precipitation experiments. We went on to determine the SlmA-FtsZ structure by small angle X-ray scattering and examined the effect of SlmA-DNA on FtsZ polymerization by electron microscopy. Our combined data show how SlmA is able to disrupt Z-ring formation through its interaction with FtsZ in a specific temporal and spatial manner and hence prevent nucleoid guillotining during cell division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Citrobacter rodentium is the rodent equivalent of human enteropathogenic Escherichia coli infection. This study investigated regulation of hepatic and renal cytochrome P450 (P450) mRNAs, hepatic P450 proteins, cytokines, and acute phase proteins during C. rodentium infection. Female C3H/HeOuJ (HeOu) and C3H/HeJ (HeJ) mice [which lack functional toll-like receptor 4 (TLR4)] were infected with C. rodentium by oral gavage and sacrificed 6 days later. Hepatic CYP4A10 and 4A14 mRNAs were decreased in HeOu mice (<4% of control). CYP3A11, 2C29, 4F14, and 4F15 mRNAs were reduced to 16 to 55% of control levels, whereas CYP2A5, 4F16, and 4F18 mRNAs were induced (180, 190, and 600% of control, respectively). The pattern of P450 regulation in HeJ mice was similar to that in HeOu mice for most P450s, with the exception of the TLR4 dependence of CYP4F15. Hepatic CYP2C, 3A, and 4A proteins in both groups were decreased, whereas CYP2E protein was not. Renal CYP4A10 and 4A14 mRNAs were significantly down-regulated in HeOu mice, whereas other P450s were unaffected. Most renal P450 mRNAs in infected HeJ mice were increased, notably CYP4A10, 4A14, 4F18, 2A5, and 3A13. Hepatic levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor alpha (TNFalpha) mRNAs were significantly increased in infected HeOu mice, whereas only TNFalpha mRNA was significantly increased in HeJ mice. Hepatic alpha1-acid glycoprotein was induced in both groups, whereas alpha-fibrinogen and angiotensinogen were unchanged. These data indicate that hepatic inflammation induced by C. rodentium infection is mainly TLR4-independent and suggest that hepatic P450 down-regulation in this model may be cytokine-mediated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Escherichia coli, the Min system, consisting of three proteins, MinC, MinD, and MinE, negatively regulates FtsZ assembly at the cell poles, helping to ensure that the Z ring will assemble only at midcell. Of the three Min proteins, MinC is sufficient to inhibit Z-ring assembly. By binding to MinD, which is mostly localized at the membrane near the cell poles, MinC is sequestered away from the cell midpoint, increasing the probability of Z-ring assembly there. Previously, it has been shown that the two halves of MinC have two distinct functions. The N-terminal half is sufficient for inhibition of FtsZ assembly, whereas the C-terminal half of the protein is required for binding to MinD as well as to a component of the division septum. In this study, we discovered that overproduction of the C-terminal half of MinC (MinC(122-231)) could also inhibit cell division and that this inhibition was at the level of Z-ring disassembly and dependent on MinD. We also found that fusing green fluorescent protein to either the N-terminal end of MinC(122-231), the C terminus of full-length MinC, or the C terminus of MinC(122-231) perturbed MinC function, which may explain why cell division inhibition by MinC(122-231) was not detected previously. These results suggest that the C-terminal half of MinC has an additional function in the regulation of Z-ring assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen that causes acute and chronic diarrhea among children, human immunodeficiency virus-infected patients, and travelers to developing regions of the world. The pathogenesis of EAEC strains involves the production of biofilm. In this study, we determined the association between presence of putative EAEC virulence genes and biofilm formation in 57 EAEC isolates (as defined by HEp-2 adherence) from travelers with diarrhea and in 18 EAEC isolates from travelers without diarrhea. Twelve nondiarrheagenic E. coli isolates from healthy travelers were used as controls. Biofilm formation was measured by using a microtiter plate assay with the crystal violet staining method, and the presence of the putative EAEC virulence genes aap, aatA, aggR, astA, irp2, pet, set1A, and shf was determined by PCR. EAEC isolates were more likely to produce biofilm than nondiarrheagenic E. coli isolates (P = 0.027), and the production of biofilm was associated with the virulence genes aggR, set1A, aatA, and irp2, which were found in 16 (40%), 17 (43%), 10 (25%), and 27 (68%) of the biofilm producers versus only 4 (11%), 6 (6%), 2 (6%), and 15 (43%) in non-biofilm producers (P = 0.008 for aggR, P = 0.0004 for set1A, P = 0.029 for aatA, and P = 0.04 for irp2). Although the proportion of EAEC isolates producing biofilm in patients with diarrhea (51%) was similar to that in patients without diarrhea (61%), biofilm production was related to the carriage of aggR (P = 0.015), set1A (P = 0.001), and aatA (P = 0.025). Since aggR is a master regulator of EAEC, the presence of aap (P = 0.004), astA (P = 0.001), irp2 (P = 0.0006), pet (P = 0.002), and set1A (P = 0.014) in an aggR versus an aggR-lacking background was investigated and was also found to be associated with biofilm production. This study suggests that biofilm formation is a common phenomenon among EAEC isolates derived from travelers with or without diarrhea and that multiple genes associated with biofilm formation are regulated by aggR.