885 resultados para EMOTION
Resumo:
Although depressed mood is a normal occurrence in response to adversity in all individuals, what distinguishes those who are vulnerable to major depressive disorder (MDD) is their inability to effectively regulate negative mood when it arises. Investigating the neural underpinnings of adaptive emotion regulation and the extent to which such processes are compromised in MDD may be helpful in understanding the pathophysiology of depression. We report results from a functional magnetic resonance imaging study demonstrating left-lateralized activation in the prefrontal cortex (PFC) when downregulating negative affect in nondepressed individuals, whereas depressed individuals showed bilateral PFC activation. Furthermore, during an effortful affective reappraisal task, nondepressed individuals showed an inverse relationship between activation in left ventrolateral PFC and the amygdala that is mediated by the ventromedial PFC (VMPFC). No such relationship was found for depressed individuals, who instead show a positive association between VMPFC and amygdala. Pupil dilation data suggest that those depressed patients who expend more effort to reappraise negative stimuli are characterized by accentuated activation in the amygdala, insula, and thalamus, whereas nondepressed individuals exhibit the opposite pattern. These findings indicate that a key feature underlying the pathophysiology of major depression is the counterproductive engagement of right prefrontal cortex and the lack of engagement of left lateral-ventromedial prefrontal circuitry important for the downregulation of amygdala responses to negative stimuli.
Resumo:
The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267–283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.
Resumo:
BACKGROUND: Previous functional imaging studies demonstrating amygdala response to happy facial expressions have all included the presentation of negatively valenced primary comparison expressions within the experimental context. This study assessed amygdala response to happy and neutral facial expressions in an experimental paradigm devoid of primary negatively valenced comparison expressions. METHODS: Sixteen human subjects (eight female) viewed 16-sec blocks of alternating happy and neutral faces interleaved with a baseline fixation condition during two functional magnetic resonance imaging scans. RESULTS: Within the ventral amygdala, a negative correlation between happy versus neutral signal changes and state anxiety was observed. The majority of the variability associated with this effect was explained by a positive relationship between state anxiety and signal change to neutral faces. CONCLUSIONS: Interpretation of amygdala responses to facial expressions of emotion will be influenced by considering the contribution of each constituent condition within a greater subtractive finding, as well as 1) their spatial location within the amygdaloid complex; and 2) the experimental context in which they were observed. Here, an observed relationship between state anxiety and ventral amygdala response to happy versus neutral faces was explained by response to neutral faces.
Resumo:
Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease s attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.
Resumo:
A computer game was used to study psychophysiological reactions to emotion-relevant events. Two dimensions proposed by Scherer (1984a, 1984b) in his appraisal theory, the intrinsic pleasantness and goal conduciveness of game events, were studied in a factorial design. The relative level at which a player performed at the moment of an event was also taken into account. A total of 33 participants played the game while cardiac activity, skin conductance, skin temperature, and muscle activity as well as emotion self-reports were assessed. The self-reports indicate that game events altered levels of pride, joy, anger, and surprise. Goal conduciveness had little effect on muscle activity but was associated with significant autonomic effects, including changes to interbeat interval, pulse transit time, skin conductance, and finger temperature. The manipulation of intrinsic pleasantness had little impact on physiological responses. The results show the utility of attempting to manipulate emotion-constituent appraisals and measure their peripheral physiological signatures.
Resumo:
Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli.
Resumo:
Background: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD).Methods: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment.Results The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group.Conclusions: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.
Resumo:
In this research, a cross-model paradigm was chosen to test the hypothesis that affective olfactory and auditory cues paired with neutral visual stimuli bearing no resemblance or logical connection to the affective cues can evoke preference shifts in those stimuli. Neutral visual stimuli of abstract paintings were presented simultaneously with liked and disliked odours and sounds, with neutral-neutral pairings serving as controls. The results confirm previous findings that the affective evaluation of previously neutral visual stimuli shifts in the direction of contingently presented affective auditory stimuli. In addition, this research shows the presence of conditioning with affective odours having no logical connection with the pictures.
Resumo:
Studies on aging and emotion suggest an increase in reported positive affect, a processing bias of positive over negative information, as well as increasingly adaptive regulation in response to negative events with advancing age. These findings imply that older individuals evaluate information differently, resulting in lowered reactivity to, and/or faster recovery from, negative information, while maintaining more positive responding to positive information. We examined this hypothesis in an ongoing study on Midlife in the US (MIDUS II) where emotional reactivity and recovery were assessed in a large number of respondents (N = 159) from a wide age range (36–84 years). We recorded eye-blink startle magnitudes and corrugator activity during and after the presentation of positive, neutral and negative pictures. The most robust age effect was found in response to neutral stimuli, where increasing age is associated with a decreased corrugator and eyeblink startle response to neutral stimuli. These data suggest that an age-related positivity effect does not essentially alter the response to emotion-laden information, but is reflected in a more positive interpretation of affectively ambiguous information. Furthermore, older women showed reduced corrugator recovery from negative pictures relative to the younger women and men, suggesting that an age-related prioritization of well-being is not necessarily reflected in adaptive regulation of negative affect.
Resumo:
Endorsed by the Society of Light and Lighting, this practical book offers comprehensive guidance on how colour, light and contrast can be incorporated within buildings to enhance their usability. The book provides state-of-the-art, clear guidance as well as a valuable information source for busy professionals involved in the design or management of new and existing environments. The ways colour, light and contrast are used within built environments are critical in determining how people interact with the space, and how confident, safe, and secure they will feel when doing so. They also have a major influence on a person’s sense of well-being and their ability to use the environment independently and without undue effort. Understanding how to use colour and contrast and how they are influenced by both natural and artificial lighting is vital for all those involved in the design and management of the environments and spaces we all use. In recent years there has been a considerable amount of work undertaken to further our understanding of how colour, light and contrast affect emotion and sensory abilities, and how they can assist or hinder people in their everyday lives. Other publications consider these issues individually but The Colour, Light and Contrast Manual: designing and managing inclusive built environments draws knowledge and information together to produce a unique, comprehensive and informative guide to how the three elements can work together to improve the design and management of environments for us all.
Resumo:
Objective: This study was designed to examine the existence of deficits in mentalizing or theory of mind (ToM) in children with traumatic brain injury (TBI). Research design: ToM functioning was assessed in 12 children aged 6-12 years with TBI and documented frontal lobe damage and compared to 12 controls matched for age, sex and verbal ability. Brief measures of attention and memory were also included. Main outcome and results: The TBI group was significantly impaired relative to controls on the advanced ToM measure and a measure of basic emotion recognition. No difference was found in a basic measure of ToM. Conclusion: Traumatic brain damage in childhood may disrupt the developmental acquisition of emotion recognition and advanced ToM skills. The clinical and theoretical importance of these findings is discussed and the implications for the assessment and treatment of children who have experienced TBI are outlined.
Resumo:
Using fMRI, we examined the neural correlates of maternal responsiveness. Ten healthy mothers viewed alternating blocks of video: (i) 40 s of their own infant; (ii) 20 s of a neutral video; (iii) 40 s of an unknown infant and (iv) 20 s of neutral video, repeated 4 times. Predominant BOLD signal change to the contrast of infants minus neutral stimulus occurred in bilateral visual processing regions BA minus neutral stimulus occurred in bilateral visual processing regions (BA 38), left amygdala and visual cortex (BA 19), and to the unknown infant minus own infant contrast in bilateral orbitofrontal cortex (BA 10,47) and medial prefrontal cortex (BA 8). These findings suggest that amygdala and temporal pole may be key sites in mediating a mother's response to her infant and reaffirms their importance in face emotion processing and social behaviour.
Resumo:
Prosody is an important feature of language, comprising intonation, loudness, and tempo. Emotional prosodic processing forms an integral part of our social interactions. The main aim of this study was to use bold contrast fMRI to clarify the normal functional neuroanatomy of emotional prosody, in passive and active contexts. Subjects performed six separate scanning studies, within which two different conditions were contrasted: (1) "pure" emotional prosody versus rest; (2) congruent emotional prosody versus 'neutral' sentences; (3) congruent emotional prosody versus rest; (4) incongruent emotional prosody versus rest; (5) congruent versus incongruent emotional prosody; and (6) an active experiment in which subjects were instructed to either attend to the emotion conveyed by semantic content or that conveyed by tone of voice. Data resulting from these contrasts were analysed using SPM99. Passive listening to emotional prosody consistently activated the lateral temporal lobe (superior and/or middle temporal gyri). This temporal lobe response was relatively right-lateralised with or without semantic information. Both the separate and direct comparisons of congruent and incongruent emotional prosody revealed that subjects used fewer brain regions to process incongruent emotional prosody than congruent. The neural response to attention to semantics, was left lateralised, and recruited an extensive network not activated by attention to emotional prosody. Attention to emotional prosody modulated the response to speech, and induced right-lateralised activity, including the middle temporal gyrus. In confirming the results of lesion and neuropsychological studies, the current study emphasises the importance of the right hemisphere in the processing of emotional prosody, specifically the lateral temporal lobes. (C) 2003 Elsevier Science Ltd. All rights reserved.