992 resultados para Drug isolation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug dissolution and release characteristics from freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose (CMC) have been investigated to determine the mechanisms of drug release from the two systems. The formulations were prepared by freeze-drying (wafers) or drying in air (films), the hydrated gel of the polymer containing paracetamol as a model soluble drug. Scanning electron microscopy (SEM) was used to examine differences between the physical structure of the wafers and films. Dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 242 nm. The effects of drug loading, polymer content and amount of glycerol (films) on the release characteristics of paracetamol were investigated. The release profiles of paracetamol from the wafers and films were also compared. A digital camera was used to observe the times to complete hydration and dissolution of the wafers containing different amounts of CMC and how that impacts on drug release rates. Both formulations showed sustained type drug release that was modelled by the Korsmeyer–Peppas equation. Changes in the concentration of drug and glycerol (films) did not significantly alter the rate of drug release while increasing polymer content significantly decreased the rate of drug release from both formulations. The results show that the rate of paracetamol release was faster from the wafers than the corresponding films due to differences in their physical structures. The wafers which formed a porous network, hydrated faster than the more dense and continuous, (non-porous) sheet-like structure of the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m−3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article takes a multidimensional or biopsychosocial conception of drug dependency as its starting point. Within this analytical framework, we advocate making the intercultural dimension more visible, since it is essential for the design and implementation of integral intervention processes. We propose intercultural competence as a working model that can increase the capacities of institutions and professionals —a particularly important consideration in the case of social work— in order to effectively address the aforementioned cultural dimension. After an extensive review of the scientific literature, we have defined five processes that can contribute to strengthening an institution’s intercultural competence and four processes that can do the same for a professional’s intercultural competence. Though selected for application in the area of drug dependencies, all these processes can also prove useful in improving attention to any other kind of culturally diverse group or person.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract There is considerable interest in developing medical devices that provide controlled delivery of biologically active agents, for example, to reduce the incidence of device-related infection. Silicone elastomers are one of the commonest biomaterials used in medical device production. However, they have a relatively high coefficient of friction and the resulting lack of lubricity can cause pain and tissue damage on device insertion and removal. Novel silicone cross-linking agents have recently been reported that produce inherently ‘self-lubricating’ silicone elastomers with very low coefficients of friction. In this study, the model antibacterial drug metronidazole has been incorporated into these self-lubricating silicone elastomers to produce a novel bioactive biomaterial. The in vitro release characteristics of the bioactive component were evaluated as a function of cross-linker composition and drug loading. Although conventional matrix-type release kinetics were observed for metronidazole from the silicone systems, it was also observed that increasing the concentration of the cross-linking agent responsible for the lubricious character (tetra(oleyloxy)silane) relative to that of the standard non-lubricious cross-linking agent (tetrapropoxysilane) produced an increase in the metronidazole flux rate by up to 65% for a specified drug loading. The results highlight the potential for developing lubricious silicone medical devices with enhanced drug release characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silicone elastomer solubilities of a range of drugs and pharmaceutical excipients employed in the development of silicone intravaginal drug delivery rings (polyethylene glycols, norethisterone acetate, estradiol, triclosan, oleyl alcohol, oxybutynin) have been determined using dynamic mechanical analysis. The method involves measuring the concentration-dependent decrease in the storage modulus associated with the melting of the incorporated drug/excipient, and extrapolation to zero change in storage modulus. The study also demonstrates the effect of drug/excipient concentrations on the mechanical stiffness of the silicone devices at 37°C.