913 resultados para Drilling process monitoring
Resumo:
Structural health monitoring has been accepted as a justified effort for long-span bridges, which are critical to a region's economic vitality. As the most heavily instrumented bridge project in the world, WASHMS - Wind And Structural Health Monitoring System has been developed and installed on the cable-supported bridges in Hong Kong (Wong and Ni 2009a). This chapter aims to share some of the experience gained through the operations and studies on the application of WASHMS. It is concluded that Structural Health Monitoring should be composed of two main components: Structural Performance Monitoring (SPM) and Structural Safety Evaluation (SSE). As an example to illustrate how the WASHMS could be used for structural performance monitoring, the layout of the sensory system installed on the Tsing Ma Bridge is briefly described. To demonstrate the two broad approaches of structural safety evaluation - Structural Health Assessment and Damage Detection, three examples in the application of SHM information are presented. These three examples can be considered as pioneer works for the research and development of the structural diagnosis and prognosis tools required by the structural health monitoring for monitoring and evaluation applications.
Resumo:
Business process modeling is widely regarded as one of the most popular forms of conceptual modeling. However, little is known about the capabilities and deficiencies of process modeling grammars and how existing deficiencies impact actual process modeling practice. This paper is a first contribution towards a theory-driven, exploratory empirical investigation of the ontological deficiencies of process modeling with the industry standard Business Process Modeling Notation (BPMN). We perform an analysis of BPMN using a theory of ontological expressiveness. Through a series of semi-structured interviews with BPMN adopters we explore empirically the actual use of this grammar. Nine ontological deficiencies related to the practice of modeling with BPMN are identified, for example, the capture of business rules and the specification of process decompositions. We also uncover five contextual factors that impact on the use of process modeling grammars, such as tool support and modeling conventions. We discuss implications for research and practice, highlighting the need for consideration of representational issues and contextual factors in decisions relating to BPMN adoption in organizations.
Resumo:
Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.
Resumo:
This paper discusses the role of advance techniques for monitoring urban growth and change for sustainable development of urban environment. It also presents results of a case study involving satellite data for land use/land cover classification of Lucknow city using IRS-1C multi-spectral features. Two classification algorithms have been used in the study. Experiments were conducted to see the level of improvement in digital classification of urban environment using Artificial Neural Network (ANN) technique.
Resumo:
The need for the development of effective business curricula that meets the needs of the marketplace has created an increase in the adoption of core competencies lists identifying appropriate graduate skills. Many organisations and tertiary institutions have individual graduate capabilities lists including skills deemed essential for success. Skills recognised as ‘critical thinking’ are popular inclusions on core competencies and graduate capability lists. While there is literature outlining ‘critical thinking’ frameworks, methods of teaching it and calls for its integration into business curricula, few studies actually identify quantifiable improvements achieved in this area. This project sought to address the development of ‘critical thinking’ skills in a management degree program by embedding a process for critical thinking within a theory unit undertaken by students early in the program. Focus groups and a student survey were used to identify issues of both content and implementation and to develop a student perspective on their needs in thinking critically. A process utilising a framework of critical thinking was integrated through a workbook of weekly case studies for group analysis, discussions and experiential exercises. The experience included formative and summative assessment. Initial results indicate a greater valuation by students of their experience in the organisation theory unit; better marks for mid semester essay assignments and higher evaluations on the university administered survey of students’ satisfaction.
Resumo:
This paper addresses the problem of constructing consolidated business process models out of collections of process models that share common fragments. The paper considers the construction of unions of multiple models (called merged models) as well as intersections (called digests). Merged models are intended for analysts who wish to create a model that subsumes a collection of process models - typically representing variants of the same underlying process - with the aim of replacing the variants with the merged model. Digests, on the other hand, are intended for analysts who wish to identify the most recurring fragments across a collection of process models, so that they can focus their efforts on optimizing these fragments. The paper presents an algorithm for computing merged models and an algorithm for extracting digests from a merged model. The merging and digest extraction algorithms have been implemented and tested against collections of process models taken from multiple application domains. The tests show that the merging algorithm produces compact models and scales up to process models containing hundreds of nodes. Furthermore, a case study conducted in a large insurance company has demonstrated the usefulness of the merging and digest extraction operators in a practical setting.
Resumo:
Condition monitoring on rails and train wheels is vitally important to the railway asset management and the rail-wheel interactions provide the crucial information of the health state of both rails and wheels. Continuous and remote monitoring is always a preference for operators. With a new generation of strain sensing devices in Fibre Bragg Grating (FBG) sensors, this study explores the possibility of continuous monitoring of the health state of the rails; and investigates the required signal processing techniques and their limitations.
Resumo:
This paper explores models of teaching and learning music composition in higher education. It analyses the pedagogical approaches apparent in the literature on teaching and learning composition in schools and universities, and introduces a teaching model as: learning from the masters; mastery of techniques; exploring ideas; and developing voice. It then presents a learning model developed from a qualitative study into students’ experiences of learning composition at university as: craft, process and art. The relationship between the students’ experiences and the pedagogical model is examined. Finally, the implications for composition curricula in higher education are presented.
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.
Resumo:
The use of feedback technologies, in the form of products such as Smart Meters, is increasingly seen as the means by which 'consumers' can be made aware of their patterns of resource consumption, and to then use this enhanced awareness to change their behaviour to reduce the environmental impacts of their consumption. These technologies tend to be single-resource focused (e.g. on electricity consumption only) and their functionality defined by persons other than end-users (e.g. electricity utilities). This paper presents initial findings of end-users' experiences with a multi-resource feedback technology, within the context of sustainable housing. It proposes that an understanding of user context, supply chain management and market diffusion issues are important design considerations that contribute to technology 'success'.
Resumo:
Real-world business processes are resource-intensive. In work environments human resources usually multitask, both human and non-human resources are typically shared between tasks, and multiple resources are sometimes necessary to undertake a single task. However, current Business Process Management Systems focus on task-resource allocation in terms of individual human resources only and lack support for a full spectrum of resource classes (e.g., human or non-human, application or non-application, individual or teamwork, schedulable or unschedulable) that could contribute to tasks within a business process. In this paper we develop a conceptual data model of resources that takes into account the various resource classes and their interactions. The resulting conceptual resource model is validated using a real-life healthcare scenario.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
The multi-criteria decision making methods, Preference METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA), and the two-way Positive Matrix Factorization (PMF) receptor model were applied to airborne fine particle compositional data collected at three sites in Hong Kong during two monitoring campaigns held from November 2000 to October 2001 and November 2004 to October 2005. PROMETHEE/GAIA indicated that the three sites were worse during the later monitoring campaign, and that the order of the air quality at the sites during each campaign was: rural site > urban site > roadside site. The PMF analysis on the other hand, identified 6 common sources at all of the sites (diesel vehicle, fresh sea salt, secondary sulphate, soil, aged sea salt and oil combustion) which accounted for approximately 68.8 ± 8.7% of the fine particle mass at the sites. In addition, road dust, gasoline vehicle, biomass burning, secondary nitrate, and metal processing were identified at some of the sites. Secondary sulphate was found to be the highest contributor to the fine particle mass at the rural and urban sites with vehicle emission as a high contributor to the roadside site. The PMF results are broadly similar to those obtained in a previous analysis by PCA/APCS. However, the PMF analysis resolved more factors at each site than the PCA/APCS. In addition, the study demonstrated that combined results from multi-criteria decision making analysis and receptor modelling can provide more detailed information that can be used to formulate the scientific basis for mitigating air pollution in the region.
Resumo:
As organizations reach higher levels of Business Process Management maturity, they tend to collect numerous business process models. Such models may be linked with each other or mutually overlap, supersede one another and evolve over time. Moreover, they may be represented at different abstraction levels depending on the target audience and modeling purpose, and may be available in multiple languages (e.g. due to company mergers). Thus, it is common that organizations struggle with keeping track of their process models. This demonstration introduces AProMoRe (Advanced Process Model Repository) which aims to facilitate the management of (large) process model collections.
Resumo:
The Transport Certification Australia on-board mass feasibility project is testing various on-board mass devices in a range of heavy vehicles (HVs). Extensive field tests of on-board mass measurement systems for HVs have been conducted during 2008. These tests were of accuracy, robustness and tamper-evidence of heavy vehicle on-board mass telematics. All the systems tested showed accuracies within approximately +/- 500 kg of gross combination mass or approximately +/- 2% of the attendant weighbridge reading. Analysis of the dynamic data also showed encouraging results and has raised the possibility of use of such dynamic information in tamper evidence in two areas. This analysis was to determine if the use of averaged dynamic data could identify potential tampering or incorrect operating procedures as well as the possibility of dynamic measurements flagging a tamper event by the use of metrics including a tampering index (TIX). Technical and business options to detect tamper events will now be developed during implementation of regulatory OBM system application to Australian heavy vehicles (HVs).