966 resultados para Dopamine receptor antagonist
Resumo:
The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (hMSC) chondrogenesis. We combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in hMSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce hMSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.
Following this, we modified this anti-inflammatory engineered cartilage to incorporate rabbit MSCs and evaluated this therapeutic strategy in a pilot study in vivo in rabbit osteochondral defects. Rabbits were fed a custom doxycycline diet to induce gene expression in engineered cartilage implanted in the joint. Serum and synovial fluid were collected and the levels of doxycycline and inflammatory mediators were measured. Rabbits were euthanized 3 weeks following surgery and tissues were harvested for analysis. We found that doxycycline levels in serum and synovial fluid were too low to induce strong overexpression of hIL-1Ra in the joint and hIL-1Ra was undetectable in synovial fluid via ELISA. Although hIL-1Ra expression in the first few days local to the site of injury may have had a beneficial effect, overall a higher doxycycline dose and more readily transduced cell population would improve application of this therapy.
In addition to the 3D woven PCL scaffold, cartilage-derived matrix scaffolds have recently emerged as a promising option for cartilage tissue engineering. Spatially-defined, biomaterial-mediated lentiviral gene delivery of tunable and inducible morphogenetic transgenes may enable guided differentiation of hMSCs into both cartilage and bone within CDM scaffolds, enhancing the ability of the CDM scaffold to provide chondrogenic cues to hMSCs. In addition to controlled production of anti-inflammatory proteins within the joint, in situ production of chondro- and osteo-inductive factors within tissue-engineered cartilage, bone, or osteochondral tissue may be highly advantageous as it could eliminate the need for extensive in vitro differentiation involving supplementation of culture media with exogenous growth factors. To this end, we have utilized controlled overexpression of transforming growth factor-beta 3 (TGF-β3), bone morphogenetic protein-2 (BMP-2) or a combination of both factors, to induce chondrogenesis, osteogenesis, or both, within CDM hemispheres. We found that TGF-β3 overexpression led to robust chondrogenesis in vitro and BMP-2 overexpression led to mineralization but not accumulation of type I collagen. We also showed the development of a single osteochondral construct by combining tissues overexpressing BMP-2 (hemisphere insert) and TGF-β3 (hollow hemisphere shell) and culturing them together in the same media. Chondrogenic ECM was localized in the TGF-β3-expressing portion and osteogenic ECM was localized in the BMP-2-expressing region. Tissue also formed in the interface between the two pieces, integrating them into a single construct.
Since CDM scaffolds can be enzymatically degraded just like native cartilage, we hypothesized that IL-1 may have an even larger influence on CDM than PCL tissue-engineered constructs. Additionally, anti-inflammatory engineered cartilage implanted in vivo will likely affect cartilage and the underlying bone. There is some evidence that osteogenesis may be enhanced by IL-1 treatment rather than inhibited. To investigate the effects of an inflammatory environment on osteogenesis and chondrogenesis within CDM hemispheres, we evaluated the ability of IL-1Ra-expressing or control constructs to undergo chondrogenesis and osteogenesis in the prescence of IL-1. We found that IL-1 prevented chondrogenesis in CDM hemispheres but did not did not produce discernable effects on osteogenesis in CDM hemispheres. IL-1Ra-expressing CDM hemispheres produced robust cartilage-like ECM and did not upregulate inflammatory mediators during chondrogenic culture in the presence of IL-1.
Resumo:
This study analysed the levels of androgen receptor antagonist activity in extracts of coastal sediments sampled from estuaries in southern UK and northern France. Anti-androgenic (AA) activity varied between <0.2 and 224.3±38.4μg flutamide equivalents/g dry weight of sediment and was significantly correlated with the total organic carbon and silt content of samples. AA activity was detected in tissues extracts of clams, Scrobicularia plana, sampled from a contaminated estuary, some of which was due to uptake of a series of 4 or 5 ring polycyclic aromatic hydrocarbons (PAHs). Initial studies also indicated that fractionated extracts of male, but not female, clams also contained androgen receptor agonist activity due to the presence of dihydrotestosterone in tissues. This study reveals widespread contamination of coastal sediments of the Transmanche region with anti-androgenic compounds and these contaminants should be investigated for their potential to disrupt sexual differentiation in aquatic organisms.
Resumo:
This study analysed the levels of androgen receptor antagonist activity in extracts of coastal sediments sampled from estuaries in southern UK and northern France. Anti-androgenic (AA) activity varied between <0.2 and 224.3±38.4μg flutamide equivalents/g dry weight of sediment and was significantly correlated with the total organic carbon and silt content of samples. AA activity was detected in tissues extracts of clams, Scrobicularia plana, sampled from a contaminated estuary, some of which was due to uptake of a series of 4 or 5 ring polycyclic aromatic hydrocarbons (PAHs). Initial studies also indicated that fractionated extracts of male, but not female, clams also contained androgen receptor agonist activity due to the presence of dihydrotestosterone in tissues. This study reveals widespread contamination of coastal sediments of the Transmanche region with anti-androgenic compounds and these contaminants should be investigated for their potential to disrupt sexual differentiation in aquatic organisms.
Resumo:
The evidence base to guide withdrawal of antidementia medications in older people with dementia is limited; while some randomised controlled studies have considered discontinuation of cholinesterase inhibitors, no such studies examining discontinuation of the N-Methyl-D-aspartate receptor antagonist memantine have been conducted to date. The purpose of this opinion article was to summarise the existing evidence on withdrawal of cholinesterase inhibitors and memantine, to highlight the key considerations for clinicians when making these prescribing decisions and to offer guidance as to when and how treatment might be discontinued. Until the evidence-base is enhanced by the findings of large scale randomised controlled discontinuation trials of ChEIs and memantine which use multiple, clinically relevant cognitive, functional and behavioural outcome measures, clinicians’ prescribing decisions involve balancing the risks of discontinuation with side-effects and costs of continued treatment. Such decisions must be highly individualised and patient-centred.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 days after spinal nerve ligation or sham surgery, and the effects of the FAAHinhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 _g in 50 _l) significantly ( p _ 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1 ) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30_g in50_l) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of shamoperated rats. Intraplantar URB597 (25 _g in 50 _l) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 _g in 50 _l) significantly ( p_0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in shamoperated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.
Resumo:
NlmCategory="UNASSIGNED">We previously reported that TLR4(-/-) mice are refractory to mouse-adapted A/PR/8/34 (PR8) influenza-induced lethality and that therapeutic administration of the TLR4 antagonist Eritoran blocked PR8-induced lethality and acute lung injury (ALI) when given starting 2 days post infection. Herein we extend these findings: anti-TLR4- or -TLR2-specific IgG therapy also conferred significant protection of wild-type (WT) mice from lethal PR8 infection. If treatment is initiated 3 h before PR8 infection and continued daily for 4 days, Eritoran failed to protect WT and TLR4(-/-) mice, implying that Eritoran must block a virus-induced, non-TLR4 signal that is required for protection. Mechanistically, we determined that (i) Eritoran blocks high-mobility group B1 (HMGB1)-mediated, TLR4-dependent signaling in vitro and circulating HMGB1 in vivo, and an HMGB1 inhibitor protects against PR8; (ii) Eritoran inhibits pulmonary lung edema associated with ALI; (iii) interleukin (IL)-1β contributes significantly to PR8-induced lethality, as evidenced by partial protection by IL-1 receptor antagonist (IL-1Ra) therapy. Synergistic protection against PR8-induced lethality was achieved when Eritoran and the antiviral drug oseltamivir were administered starting 4 days post infection. Eritoran treatment does not prevent development of an adaptive immune response to subsequent PR8 challenge. Overall, our data support the potential of a host-targeted therapeutic approach to influenza infection.Mucosal Immunology advance online publication 27 January 2016; doi:10.1038/mi.2015.141.
Resumo:
Tetracarpidium conophorum (TC) (Euphorbiaceae) is a perennial woody climbing shrub in low bush forest of some parts of West Africa and used among the natives for relief of ailments accompanying pain and inflammation. In this study, the analgesic and anti-inflammatory effects of the methanolic extract (METC) and fractions (ethyl acetate, F1 and n-hexane, F2) of Tetracarpidium conophorum leaf were evaluated in rat and mice. The analgesic activity was evaluated using acetic acid-induced writhing, formalin-induced paw licking and hot plate test models. Carrageenan-induced paw oedema was used to assess anti-inflammatory activity in rats. The mechanism of action of (TC) was explored by the use of naloxone, a non-selective opioid receptor blocker. The highest analgesic effect was observed in F2 extract at 57.21% inhibition and was further studied on various analgesic and anti-inflammatory models in graded doses. F2 significantly inhibited the late phase of formalin-induced paw licking and prolong hot plate latency at 55±1°C. The n-hexane fraction also significantly inhibited carrageenan-induced paw oedema in rats at 100 and 200mg/kg doses significantly (p< 0.001) and reduced paw licking response by 85.08% compared with control. Naloxone, an opioid receptor antagonist, did not significantly affect the changes observed with n-hexane fraction, thus ruling out the possibility of the involvement of opioid receptors in the analgesic actions of Tetracarpidium conophorum. Phytochemical screening showed that the leaf extracts contain alkaloids, tannins, saponins and cardenolides. The investigations showed that Tetracarpidium conophorum possesses significant anti-nociceptive and anti-inflammatory activities that should be explored.
Resumo:
Background and Purpose—High blood pressure (BP) is common in acute ischemic stroke and associated independently with a poor functional outcome. However, the management of BP acutely remains unclear because no large trials have been completed. Methods—The factorial PRoFESS secondary stroke prevention trial assessed BP-lowering and antiplatelet strategies in 20 332 patients; 1360 were enrolled within 72 hours of ischemic stroke, with telmisartan (angiotensin receptor antagonist, 80 mg/d, n647) vs placebo (n713). For this nonprespecified subgroup analysis, the primary outcome was functional outcome at 30 days; secondary outcomes included death, recurrence, and hemodynamic measures at up to 90 days. Analyses were adjusted for baseline prognostic variables and antiplatelet assignment. Results—Patients were representative of the whole trial (age 67 years, male 65%, baseline BP 147/84 mm Hg, small artery disease 60%, NIHSS 3) and baseline variables were similar between treatment groups. The mean time from stroke to recruitment was 58 hours. Combined death or dependency (modified Rankin scale: OR, 1.03; 95% CI, 0.84–1.26; P0.81; death: OR, 1.05; 95% CI, 0.27–4.04; and stroke recurrence: OR, 1.40; 95% CI, 0.68–2.89; P0.36) did not differ between the treatment groups. In comparison with placebo, telmisartan lowered BP (141/82 vs 135/78 mmHg, difference 6 to 7 mmHg and 2 to 4 mmHg; P0.001), pulse pressure (3 to 4 mmHg; P0.002), and rate-pressure product (466 mmHg.bpm; P0.0004). Conclusion—Treatment with telmisartan in 1360 patients with acute mild ischemic stroke and mildly elevated BP appeared to be safe with no excess in adverse events, was not associated with a significant effect on functional dependency, death, or recurrence, and modestly lowered BP.
Resumo:
We investigated the potential of secretory phospholipase A(2) (sPLA(2))-induced pancreatitis to promote abdominal hyperalgesia, as well as to depolarize sensory fibres in vitro using a grease-gap technique. Pancreatitis was induced by the injection of sPLA(2) from Crotalus durissus terrificus (sPLA(2) Cdt, 300 mu g kg(-1)) venom into the common bile duct of rats. Pancreatic inflammatory signs, serum amylase levels and abdominal hyperalgesia were evaluated in rats treated or not with SR140333, a tachykinin NK1 receptor antagonist. Injection of sPLA(2) Cdt caused pancreatic oedema formation and increased pancreatic neutrophil infiltration and serum amylase at 4 h, which returned to normality by 24 h, except for the neutrophil infiltration, which was still increased at this time point. Animals injected with sPLA(2) exhibited a lower withdrawal threshold to electronic von Frey stimulation in the upper abdominal region at 4 h, but not 24 h, post-injection when compared with saline-injected rats. Pre-treatment of animals with SR140333 significantly reduced the sPLA(2) Cdt-induced abdominal hyperalgesia, without affecting the other parameters. Neither sPLA(2) Cdt nor sPLA(2) from Naja mocambique mocambique venom depolarized capsaicin-sensitive sensory fibres from rat vagus nerve, but they decreased the propagated compound action potentials in both A and C fibres. These data show for the first time that NK1 receptors play an important role in the early abdominal hyperalgesia in a rat model of sPLA(2)-induced pancreatitis, suggesting that these receptors are of importance in the development of pain in the pancreatitis condition. We also provide evidence that sPLA(2)s do not directly depolarize sensory fibres in vitro. (C) 2011 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Resumo:
Dopamine D2 receptors are involved in ethanol self- administration behavior and also suggested to mediate the onset and offset of ethanol drinking. In the present study, we investigated dopamine (DA) content and Dopamine D2 (DA D2) receptors in the hypothalamus and corpus striatum of ethanol treated rats and aldehyde dehydrogenase (ALDH) activity in the liver and plasma of ethanol treated rats and in vitro hepatocyte cultures. Hypothalamic and corpus striatal DA content decreased significantly (P\0.05, P\0.001 respectively) and homovanillic acid/ dopamine (HVA/DA) ratio increased significantly (P\0.001) in ethanol treated rats when compared to control. Scatchard analysis of [3H] YM-09151-2 binding to DA D2 receptors in hypothalamus showed a significant increase (P\0.001) in Bmax without any change in Kd in ethanol treated rats compared to control. The Kd of DA D2 receptors significantly decreased (P\0.05) in the corpus striatum of ethanol treated rats when compared to control. DA D2 receptor affinity in the hypothalamus and corpus striatum of control and ethanol treated rats fitted to a single site model with unity as Hill slope value. The in vitro studies on hepatocyte cultures showed that 10-5 M and 10-7 M DA can reverse the increased ALDH activity in 10% ethanol treated cells to near control level. Sulpiride, an antagonist of DA D2, reversed the effect of dopamine on 10% ethanol induced ALDH activity in hepatocytes. Our results showed a decreased dopamine concentration with enhanced DA D2 receptors in the hypothalamus and corpus striatum of ethanol treated rats. Also, increased ALDH was observed in the plasma and liver of ethanol treated rats and in vitro hepatocyte cultures with 10% ethanol as a compensatory mechanism for increased aldehyde production due to increased dopamine metabolism. A decrease in dopamine concentration in major brain regions is coupled with an increase in ALDH activity in liver and plasma, which contributes to the tendency for alcoholism. Since the administration of 10-5 M and 10-7 M DA can reverse the increased ALDH activity in ethanol treated cells to near control level, this has therapeutic application to correct ethanol addicts from addiction due to allergic reaction observed in aldehyde accumulation.
Resumo:
Excitation of the mesocorticolimbic pathway, originating from dopaminergic neurons in the ventral tegmental area (VTA), may be important for the development of exaggerated fear responding. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. The functional role of the dopaminergic pathway connecting the VIA to the basolateral amygdala (BLA) in fear and anxiety has received little attention. In vivo microdialysis was performed to measure dopamine levels in the BLA of Wistar rats that received the dopamine D(2) agonist quinpirole (1 mu g/0.2 mu l) into the VTA and were subjected to a fear conditioning test using a light as the conditioned stimulus (CS). The effects of intra-BLA injections of the D(1) antagonist SCH 23390 (1 and 2 mu g/0.2 mu l) and D(2) antagonist sulpiride (1 and 2 mu g/0.2 mu l) on fear-potentiated startle (FPS) to a light-CS were also assessed. Locomotor performance was evaluated by use of open-field and rotarod tests. Freezing and increased dopamine levels in the BLA in response to the CS were both inhibited by intra-VTA quinpirole. Whereas intra-BLA SCH 23390 did not affect FPS, intra-BLA sulpiride (2 mu g) inhibited FPS. Sulpiride`s ability to decrease FPS cannot be attributed to nonspecific effects because this drug did not affect motor performance. These findings indicate that the dopamine D(2) receptor pathway connecting the ventral tegmental area and the basolateral amygdala modulates fear and anxiety and may be a novel pharmacological target for the treatment of anxiety. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper reports the isolation of two putative D2R promoters from grey mullet, one 5' flanking and the other an intronic sequence immediately upstream of the first coding exon. Promoter activity of the intronic sequence was confirmed in vitro through functional analysis using luciferase as reporter gene. The functional characteristics of the region flanking the 5'-UTR is currently under investigation.
Resumo:
Objective. To evaluate the antiinflammatory effects of RC-3095 in 2 experimental models of arthritis, collagen-induced arthritis (CIA) and antigen-induced arthritis (AIA), and to determine the mechanisms of action involved. Methods. RC-3095 was administered daily to mice with CIA and mice with AIA, after induction of disease with methylated bovine serum albumin. Disease incidence and severity were assessed using a clinical index and evaluation of histologic features, respectively. In mice with CIA, gastrin-releasing peptide receptor (GRPR) was detected by immunohistochemical analysis, while in mice with AIA, migration of neutrophils, presence of glycosaminoglycans, and lymphocyte proliferation, determined using the MTT assay, were assessed. Expression of cytokines interleukin-17 (IL-17), IL-1 beta, and tumor necrosis factor alpha (TNF alpha) was evaluated in all mouse knees using enzyme-linked immunosorbent assay. Treg cell production was assessed by flow cytometry in the joints of mice with AIA. Results. In mice with AIA, administration of RC-3095 reduced neutrophil migration, mechanical hypernociception, and proteoglycan loss. These findings were associated with inhibition of the levels of all 3 proinflammatory cytokines, decreased lymphocyte proliferation, and increased Treg cell numbers. In the CIA model, treatment with RC-3095 led to a significant reduction in arthritis clinical scores and the severity of disease determined histologically. Synovial inflammation, synovial hyperplasia, pannus formation, and extensive erosive changes were all dramatically reduced in the arthritic mice treated with RC-3095. Furthermore, arthritic mice treated with RC-3095 showed a significant reduction in the concentrations of IL-17, IL-1 beta, and TNF alpha, and showed a diminished expression of GRPR. Conclusion. These findings suggest that the GRP pathway has a significant role in chronic arthritis, and its inhibition can be explored as a possible therapeutic strategy in rheumatoid arthritis.
Resumo:
A novel photoactivatable analog of antisauvagine-30 (aSvg-30), a specific antagonist for corticotropin-releasing factor (CRF) receptor, type 2 (CRF2), has been synthesized and characterized. The N-terminal amino-acid D-Phe in aSvg-30 [D-Phe11,His12] Svg((11-40)) was replaced by a phenyldiazirine, the 4-(1-azi-2,2,2-trifluoroethyl) benzoyl (ATB) residue. The photoactivatable aSvg-30 analog ATB-[ His12] Svg was tested for its ability to displace [I-125-Tyr0] oCRF or [I-125-Tyr0]Svg from membrane homogenates of human embryonic kidney (HEK) 293 cells stably transfected with cDNA coding for rat CRF receptor, type 1 ( rCRF(1)) or mouse CRF receptor, type 2beta (mCRF(2beta)). Furthermore, the ability of ATB- [His12] Svg((12-40)) to inhibit oCRF- or Svg-stimulated cAMP production of transfected HEK 293 cells expressing either rCRF(1) (HEK-rCRF(1) cells) or mCRF(2beta) (HEK-mCRF(2beta) cells) was determined. Unlike astressin and photo astressin, ATB- [His12]Svg((12-40)) showed high selective binding to mCRF(2beta) (K-i = 3.1 +/- 0.2 nM) but not the rCRF(1) receptor (K-i = 142. 5 +/- 22.3 nM) and decreased Svg-stimulated cAMP activity in mCRF(2beta)-expressing cells in a similar fashion as aSvg-30. A66-kDa protein was identified by SDS/PAGE, when the radioactively iodinated analog of ATB- [His12]Svg((12-40)) was covalently linked to mCRF(2beta) receptor. The specificity of the photoactivatable I-125-labeled CRF2beta antagonist was demonstrated with SDS/PAGE by the finding that this analog could be displaced from the receptor by antisauvagine-30, but not other unrelated peptides such as vasoactive intestinal peptide (VIP).