840 resultados para Distributed operating systems (Computers)
Resumo:
In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.
Resumo:
Mobile applications are being increasingly deployed on a massive scale in various mobile sensor grid database systems. With limited resources from the mobile devices, how to process the huge number of queries from mobile users with distributed sensor grid databases becomes a critical problem for such mobile systems. While the fundamental semantic cache technique has been investigated for query optimization in sensor grid database systems, the problem is still difficult due to the fact that more realistic multi-dimensional constraints have not been considered in existing methods. To solve the problem, a new semantic cache scheme is presented in this paper for location-dependent data queries in distributed sensor grid database systems. It considers multi-dimensional constraints or factors in a unified cost model architecture, determines the parameters of the cost model in the scheme by using the concept of Nash equilibrium from game theory, and makes semantic cache decisions from the established cost model. The scenarios of three factors of semantic, time and locations are investigated as special cases, which improve existing methods. Experiments are conducted to demonstrate the semantic cache scheme presented in this paper for distributed sensor grid database systems.
Resumo:
We provide a new unified framework, called "multiple correlated informants - single recipient" communication, to address the variations of the traditional Distributed Source Coding (DSC) problem. Different combinations of the assumptions about the communication scenarios and the objectives of communication result in different variations of the DSC problem. For each of these variations, the complexities of communication and computation of the optimal solution is determined by the combination of the underlying assumptions. In the proposed framework, we address the asymmetric, interactive, and lossless variant of the DSC problem, with various objectives of communication and provide optimal solutions for those. Also, we consider both, the worst-case and average-case scenarios.
Resumo:
In wireless ad hoc networks, nodes communicate with far off destinations using intermediate nodes as relays. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios (complete cooperation and complete noncooperation) are inimical to the interests of a user. In this paper, we address the issue of user cooperation in ad hoc networks. We assume that nodes are rational, i.e., their actions are strictly determined by self interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we are able to determine the optimal share of service that each node should receive. We define this to be the rational Pareto optimal operating point. We then propose a distributed and scalable acceptance algorithm called Generous TIT-FOR-TAT (GTFT). The acceptance algorithm is used by the nodes to decide whether to accept or reject a relay request. We show that GTFT results in a Nash equilibrium and prove that the system converges to the rational and optimal operating point.
Resumo:
A key trait of Free and Open Source Software (FOSS) development is its distributed nature. Nevertheless, two project-level operations, the fork and the merge of program code, are among the least well understood events in the lifespan of a FOSS project. Some projects have explicitly adopted these operations as the primary means of concurrent development. In this study, we examine the effect of highly distributed software development, is found in the Linux kernel project, on collection and modelling of software development data. We find that distributed development calls for sophisticated temporal modelling techniques where several versions of the source code tree can exist at once. Attention must be turned towards the methods of quality assurance and peer review that projects employ to manage these parallel source trees. Our analysis indicates that two new metrics, fork rate and merge rate, could be useful for determining the role of distributed version control systems in FOSS projects. The study presents a preliminary data set consisting of version control and mailing list data.
Resumo:
A key trait of Free and Open Source Software (FOSS) development is its distributed nature. Nevertheless, two project-level operations, the fork and the merge of program code, are among the least well understood events in the lifespan of a FOSS project. Some projects have explicitly adopted these operations as the primary means of concurrent development. In this study, we examine the effect of highly distributed software development, is found in the Linux kernel project, on collection and modelling of software development data. We find that distributed development calls for sophisticated temporal modelling techniques where several versions of the source code tree can exist at once. Attention must be turned towards the methods of quality assurance and peer review that projects employ to manage these parallel source trees. Our analysis indicates that two new metrics, fork rate and merge rate, could be useful for determining the role of distributed version control systems in FOSS projects. The study presents a preliminary data set consisting of version control and mailing list data.
Resumo:
As the virtual world grows more complex, finding a standard way for storing data becomes increasingly important. Ideally, each data item would be brought into the computer system only once. References for data items need to be cryptographically verifiable, so the data can maintain its identity while being passed around. This way there will be only one copy of the users family photo album, while the user can use multiple tools to show or manipulate the album. Copies of users data could be stored on some of his family members computer, some of his computers, but also at some online services which he uses. When all actors operate over one replicated copy of the data, the system automatically avoids a single point of failure. Thus the data will not disappear with one computer breaking, or one service provider going out of business. One shared copy also makes it possible to delete a piece of data from all systems at once, on users request. In our research we tried to find a model that would make data manageable to users, and make it possible to have the same data stored at various locations. We studied three systems, Persona, Freenet, and GNUnet, that suggest different models for protecting user data. The main application areas of the systems studied include securing online social networks, providing anonymous web, and preventing censorship in file-sharing. Each of the systems studied store user data on machines belonging to third parties. The systems differ in measures they take to protect their users from data loss, forged information, censorship, and being monitored. All of the systems use cryptography to secure names used for the content, and to protect the data from outsiders. Based on the gained knowledge, we built a prototype platform called Peerscape, which stores user data in a synchronized, protected database. Data items themselves are protected with cryptography against forgery, but not encrypted as the focus has been disseminating the data directly among family and friends instead of letting third parties store the information. We turned the synchronizing database into peer-to-peer web by revealing its contents through an integrated http server. The REST-like http API supports development of applications in javascript. To evaluate the platform s suitability for application development we wrote some simple applications, including a public chat room, bittorrent site, and a flower growing game. During our early tests we came to the conclusion that using the platform for simple applications works well. As web standards develop further, writing applications for the platform should become easier. Any system this complex will have its problems, and we are not expecting our platform to replace the existing web, but are fairly impressed with the results and consider our work important from the perspective of managing user data.
Resumo:
Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.
Resumo:
The author presents adaptive control techniques for controlling the flow of real-time jobs from the peripheral processors (PPs) to the central processor (CP) of a distributed system with a star topology. He considers two classes of flow control mechanisms: (1) proportional control, where a certain proportion of the load offered to each PP is sent to the CP, and (2) threshold control, where there is a maximum rate at which each PP can send jobs to the CP. The problem is to obtain good algorithms for dynamically adjusting the control level at each PP in order to prevent overload of the CP, when the load offered by the PPs is unknown and varying. The author formulates the problem approximately as a standard system control problem in which the system has unknown parameters that are subject to change. Using well-known techniques (e.g., naive-feedback-controller and stochastic approximation techniques), he derives adaptive controls for the system control problem. He demonstrates the efficacy of these controls in the original problem by using the control algorithms in simulations of a queuing model of the CP and the load controls.
Resumo:
Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.
Resumo:
The use of invariants is an important tool for analysis of distributed and concurrent systems modeled by Petri nets. For a large practical system, the computation of desired invariants by the existing techniques is a time-consuming task. This paper proposes a theoretical foundation for simplified computation of desired invariants. We provide invariant-preserving Petri net reduction rules followed by the conditions for the existence of invariants in various well-structured nets. If an invariant exists, it can be found directly from the net structure using the formulas derived, or by applying the existing techniques on the reduced net.
Resumo:
A detailed characterization of interference power statistics in CDMA systems is of considerable practical and theoretical interest. Such a characterization for uplink inter-cell interference has been difficult because of transmit power control, randomness in the number of interfering mobile stations, and randomness in their locations. We develop a new method to model the uplink inter-cell interference power as a lognormal distribution, and show that it is an order of magnitude more accurate than the conventional Gaussian approximation even when the average number of mobile stations per cell is relatively large and even outperforms the moment-matched lognormal approximation considered in the literature. The proposed method determines the lognormal parameters by matching its moment generating function with a new approximation of the moment generating function for the inter-cell interference. The method is tractable and exploits the elegant spatial Poisson process theory. Using several numerical examples, the accuracy of the proposed method in modeling the probability distribution of inter-cell interference is verified for both small and large values of interference.
Resumo:
In this paper, we propose a training-based channel estimation scheme for large non-orthogonal space-time block coded (STBC) MIMO systems.The proposed scheme employs a block transmission strategy where an N-t x N-t pilot matrix is sent (for training purposes) followed by several N-t x N-t square data STBC matrices, where Nt is the number of transmit antennas. At the receiver, we iterate between channel estimation (using an MMSE estimator) and detection (using a low-complexity likelihood ascent search (LAS) detector) till convergence or for a fixed number of iterations. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed scheme at low complexities. The fact that we could show such good results for large STBCs (e.g., 16 x 16 STBC from cyclic division algebras) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot-based channel estimation and turbo coding) establishes the effectiveness of the proposed scheme.
Resumo:
Many real-time database applications arise in electronic financial services, safety-critical installations and military systems where enforcing security is crucial to the success of the enterprise. For real-time database systems supporting applications with firm deadlines, we investigate here the performance implications, in terms of killed transactions, of guaranteeing multilevel secrecy. In particular, we focus on the concurrency control (CC) aspects of this issue. Our main contributions are the following: First, we identify which among the previously proposed real-time CC protocols are capable of providing covert-channel-free security. Second, using a detailed simulation model, we profile the real-time performance of a representative set of these secure CC protocols for a variety of security-classified workloads and system configurations. Our experiments show that a prioritized optimistic CC protocol, OPT-WAIT, provides the best overall performance. Third, we propose and evaluate a novel "dual-CC" approach that allows the real-time database system to simultaneously use different CC mechanisms for guaranteeing security and for improving real-time performance. By appropriately choosing these different mechanisms, concurrency control protocols that provide even better performance than OPT-WAIT are designed. Finally, we propose and evaluate GUARD, an adaptive admission-control policy designed to provide fairness with respect to the distribution of killed transactions across security levels. Our experiments show that GUARD efficiently provides close to ideal fairness for real-time applications that can tolerate covert channel bandwidths of upto one bit per second.
Resumo:
In a storage system where individual storage nodes are prone to failure, the redundant storage of data in a distributed manner across multiple nodes is a must to ensure reliability. Reed-Solomon codes possess the reconstruction property under which the stored data can be recovered by connecting to any k of the n nodes in the network across which data is dispersed. This property can be shown to lead to vastly improved network reliability over simple replication schemes. Also of interest in such storage systems is the minimization of the repair bandwidth, i.e., the amount of data needed to be downloaded from the network in order to repair a single failed node. Reed-Solomon codes perform poorly here as they require the entire data to be downloaded. Regenerating codes are a new class of codes which minimize the repair bandwidth while retaining the reconstruction property. This paper provides an overview of regenerating codes including a discussion on the explicit construction of optimum codes.