840 resultados para Distributed multimedia systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transistor laser is a unique three-port device that operates simultaneously as a transistor and a laser. With quantum wells incorporated in the base regions of heterojunction bipolar transistors, the transistor laser possesses advantageous characteristics of fast base spontaneous carrier lifetime, high differential optical gain, and electrical-optical characteristics for direct “read-out” of its optical properties. These devices have demonstrated many useful features such as high-speed optical transmission without the limitations of resonance, non-linear mixing, frequency multiplication, negative resistance, and photon-assisted switching. To date, all of these devices operate as multi-mode lasers without any type of wavelength selection or stabilizing mechanisms. Stable single-mode distributed feedback diode laser sources are important in many applications including spectroscopy, as pump sources for amplifiers and solid-state lasers, for use in coherent communication systems, and now as TLs potentially for integrated optoelectronics. The subject of this work is to expand the future applications of the transistor laser by demonstrating the theoretical background, process development and device design necessary to achieve singlelongitudinal- mode operation in a three-port transistor laser. A third-order distributed feedback surface grating is fabricated in the top emitter AlGaAs confining layers using soft photocurable nanoimprint lithography. The device produces continuous wave laser operation with a peak wavelength of 959.75 nm and threshold current of 13 mA operating at -70 °C. For devices with cleaved ends a side-mode suppression ratio greater than 25 dB has been achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In database applications, access control security layers are mostly developed from tools provided by vendors of database management systems and deployed in the same servers containing the data to be protected. This solution conveys several drawbacks. Among them we emphasize: 1) if policies are complex, their enforcement can lead to performance decay of database servers; 2) when modifications in the established policies implies modifications in the business logic (usually deployed at the client-side), there is no other possibility than modify the business logic in advance and, finally, 3) malicious users can issue CRUD expressions systematically against the DBMS expecting to identify any security gap. In order to overcome these drawbacks, in this paper we propose an access control stack characterized by: most of the mechanisms are deployed at the client-side; whenever security policies evolve, the security mechanisms are automatically updated at runtime and, finally, client-side applications do not handle CRUD expressions directly. We also present an implementation of the proposed stack to prove its feasibility. This paper presents a new approach to enforce access control in database applications, this way expecting to contribute positively to the state of the art in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In database applications, access control security layers are mostly developed from tools provided by vendors of database management systems and deployed in the same servers containing the data to be protected. This solution conveys several drawbacks. Among them we emphasize: (1) if policies are complex, their enforcement can lead to performance decay of database servers; (2) when modifications in the established policies implies modifications in the business logic (usually deployed at the client-side), there is no other possibility than modify the business logic in advance and, finally, 3) malicious users can issue CRUD expressions systematically against the DBMS expecting to identify any security gap. In order to overcome these drawbacks, in this paper we propose an access control stack characterized by: most of the mechanisms are deployed at the client-side; whenever security policies evolve, the security mechanisms are automatically updated at runtime and, finally, client-side applications do not handle CRUD expressions directly. We also present an implementation of the proposed stack to prove its feasibility. This paper presents a new approach to enforce access control in database applications, this way expecting to contribute positively to the state of the art in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.

(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.

(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Diagnostic decision-making is made through a combination of Systems 1 (intuition or pattern-recognition) and Systems 2 (analytic) thinking. The purpose of this study was to use the Cognitive Reflection Test (CRT) to evaluate and compare the level of Systems 1 and 2 thinking among medical students in pre-clinical and clinical programs. Methods: The CRT is a three-question test designed to measure the ability of respondents to activate metacognitive processes and switch to System 2 (analytic) thinking where System 1 (intuitive) thinking would lead them astray. Each CRT question has a correct analytical (System 2) answer and an incorrect intuitive (System 1) answer. A group of medical students in Years 2 & 3 (pre-clinical) and Years 4 (in clinical practice) of a 5-year medical degree were studied. Results: Ten percent (13/128) of students had the intuitive answers to the three questions (suggesting they generally relied on System 1 thinking) while almost half (44%) answered all three correctly (indicating full analytical, System 2 thinking). Only 3-13% had incorrect answers (i.e. that were neither the analytical nor the intuitive responses). Non-native English speaking students (n = 11) had a lower mean number of correct answers compared to native English speakers (n = 117: 1.0 s 2.12 respectfully: p < 0.01). As students progressed through questions 1 to 3, the percentage of correct System 2 answers increased and the percentage of intuitive answers decreased in both the pre-clinical and clinical students. Conclusions: Up to half of the medical students demonstrated full or partial reliance on System 1 (intuitive) thinking in response to these analytical questions. While their CRT performance has no claims to make as to their future expertise as clinicians, the test may be used in helping students to understand the importance of awareness and regulation of their thinking processes in clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a distributed hierarchical multiagent architecture for detecting SQL injection attacks against databases. It uses a novel strategy, which is supported by a Case-Based Reasoning mechanism, which provides to the classifier agents with a great capacity of learning and adaptation to face this type of attack. The architecture combines strategies of intrusion detection systems such as misuse detection and anomaly detection. It has been tested and the results are presented in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La gran cantidad de personas interesadas actualmente en cuidar de su salud por medio de la Bicicleta, es una tendencia que cada vez toma más fuerza y por esto, se tomara como ventaja que la ciudad de Bogotá con sus últimos alcaldes han decidió apoyar el uso de esta. Aplicación para realizar grupos de ciclistas y poder salir cualquier día de la semana acompañado de más personas por un tema de transporte pero también de ocio. El objetivo es que las personas que no utilizan la bicicleta por miedo a salir solos, puedan unirse a diferentes grupos y hacer bici paseos por la ciudad, también contemplamos el hecho de que existen personas que quieren montar bicicleta como aficionados, es decir que salen por la carreteras aledañas a la capital pero muchas veces no tienen grupo con quien rodar. Queremos para el año 2020, lograr ser una de las aplicaciones de Bicicletas más exitosa de la ciudadanía de Bogotá, siendo una de las aplicaciones que mas apoya el uso diario y deportivo de la bicicleta. Nuestra aplicación ofrece el servicio principalmente de reunir gente y hacer paseos con diferentes personas haciendo uso de las bicicletas, dentro de la ciudad como ocio y transporte se realizarían en la mañana y noches, pero así mismo realizar grupos para hacer uso de la bicicleta por carreteras, es decir más como modo profesional o aficionado. Nuestra aplicación cuenta con una interface para seleccionar el tipo de bici usuario y segundo por donde o a donde quiere dirigirse para así mismo mostrarle las rutas cercanas a él. Nuestra característica principal es la unión de diferentes grupos, personas y entidades para hacer uso de la Bicicleta, tenemos una plataforma interactiva y fácil de usar, tan fácil que cualquier persona que no esté inmersa en el mundo de los Smartphone o aplicaciones pueda aprender a usarla. Unas de las ventajas con las que cuento es que desde muy joven me ha gustado montar en bicicletas y es así como decido crear una aplicación ya que compañeros, familiares y conocidos no salían a montar bicicleta solo conmigo, preferían que fuese un grupo más grande. Así mismo cuento con 3 compañeros de la universidad Javeriana que son programadores y ellos me van a brindar apoyo con la programación de la aplicación, y una compañera cercana a mí que estudio diseño industrial y me brindara apoyo con el diseño e imagen corporativa de la aplicación. Cuento con planta física para ubicar la oficina de nuestra empresa. Esta aplicación va dirigida principalmente a los habitantes de la ciudad de Bogotá, interesados en el cuidado de su salud combinado con medio de transporte, y personas correspondientes al estrato 2 en adelante, ya que son las personas que normalmente hacen uso de la bicicleta o que son personas potenciales para empezar hacer uso de la bicicleta. . La ciudad de Bogotá cuenta con 8’037.732 habitantes y este proyecto va ser desarrollado en toda la ciudad, toca tener en cuenta que la ciudad esta mesclada entre la diferente estratificación, no dirigimos a los estratos 2 y 3 que tenga la posibilidad de tener su Bicicleta y un celular tipo Smartphone, para los estratos 4, 5 y 6 sabemos que tiene la facilidad de obtener una bicicleta y ellos son nuestro usuario potencial el cual generaríamos un cambio y tomarían su bicicleta para hacer ejercicio como ocio y como medio de transporte. En cuanto a la proyección financiera para la aplicación, como se mencionó anteriormente, contamos con una gran ventaja, ya que la inversión requerida será menor debido a la propiedad con la que cuento para llevar a cabo el proyecto. Una propiedad de 60 metros cuadrados para empezar, la cual cuenta con salas de reunión y auditorio, un parqueaderos exteriores. Al hacer la calculación se va tener en cuenta el pago de un arriendo sin importan que sea de nuestra propiedad y así poder evidenciar realmente como es el estado financiero y no subsidiarla. Por otro lado, la inversión en efectivo que se necesitara será aproximadamente de $100.000.000 que serán $50.000.000 de mis padres y el restante saldrán de mis ahorros, Javier Amortegui Babativa, los cuales serán distribuidos para adecuación de planta, equipos y sistemas $17.616.880, para publicidad y mercadeo: $30.000.000, creación de la aplicación $34.000.000, sistemas IOS + Android $421.600, Gastos de composición empresarial y bancarios $11.000.000 y por último se va tener un provisión para imprevistos por el restante $6.961.520. Nuestras proyecciones de ventas han sido basadas en aplicaciones similares con un mismo formato de lucro con el tema de bicicletas pero no con la misma idea de negocio, nuestras proyecciones de ventas estimadas serán de $20.000.000 a $25.000.000 los primeros 3 meses, mientras tomamos fuerza en el mercado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability and responsible environmental behaviour constitute a vital premise in the development of the humankind. In fact, during last decades, the global energetic scenario is evolving towards a scheme with increasing relevance of Renewable Energy Sources (RES) like photovoltaic, wind, biomass and hydrogen. Furthermore, hydrogen is an energy carrier which constitutes a mean for long-term energy storage. The integration of hydrogen with local RES contributes to distributed power generation and early introduction of hydrogen economy. Intermittent nature of many of RES, for instance solar and wind sources, impose the development of a management and control strategy to overcome this drawback. This strategy is responsible of providing a reliable, stable and efficient operation of the system. To implement such strategy, a monitoring system is required.The present paper aims to contribute to experimentally validate LabVIEW as valuable tool to develop monitoring platforms in the field of RES-based facilities. To this aim, a set of real systems successfully monitored is exposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet of Things systems are pervasive systems evolved from cyber-physical to large-scale systems. Due to the number of technologies involved, software development involves several integration challenges. Among them, the ones preventing proper integration are those related to the system heterogeneity, and thus addressing interoperability issues. From a software engineering perspective, developers mostly experience the lack of interoperability in the two phases of software development: programming and deployment. On the one hand, modern software tends to be distributed in several components, each adopting its most-appropriate technology stack, pushing programmers to code in a protocol- and data-agnostic way. On the other hand, each software component should run in the most appropriate execution environment and, as a result, system architects strive to automate the deployment in distributed infrastructures. This dissertation aims to improve the development process by introducing proper tools to handle certain aspects of the system heterogeneity. Our effort focuses on three of these aspects and, for each one of those, we propose a tool addressing the underlying challenge. The first tool aims to handle heterogeneity at the transport and application protocol level, the second to manage different data formats, while the third to obtain optimal deployment. To realize the tools, we adopted a linguistic approach, i.e.\ we provided specific linguistic abstractions that help developers to increase the expressive power of the programming language they use, writing better solutions in more straightforward ways. To validate the approach, we implemented use cases to show that the tools can be used in practice and that they help to achieve the expected level of interoperability. In conclusion, to move a step towards the realization of an integrated Internet of Things ecosystem, we target programmers and architects and propose them to use the presented tools to ease the software development process.