847 resultados para Distributed embedded systems
Resumo:
Spectral efficiency is a key characteristic of cellular communications systems, as it quantifies how well the scarce spectrum resource is utilized. It is influenced by the scheduling algorithm as well as the signal and interference statistics, which, in turn, depend on the propagation characteristics. In this paper we derive analytical expressions for the short-term and long-term channel-averaged spectral efficiencies of the round robin, greedy Max-SINR, and proportional fair schedulers, which are popular and cover a wide range of system performance and fairness trade-offs. A unified spectral efficiency analysis is developed to highlight the differences among these schedulers. The analysis is different from previous work in the literature in the following aspects: (i) it does not assume the co-channel interferers to be identically distributed, as is typical in realistic cellular layouts, (ii) it avoids the loose spectral efficiency bounds used in the literature, which only considered the worst case and best case locations of identical co-channel interferers, (iii) it explicitly includes the effect of multi-tier interferers in the cellular layout and uses a more accurate model for handling the total co-channel interference, and (iv) it captures the impact of using small modulation constellation sizes, which are typical of cellular standards. The analytical results are verified using extensive Monte Carlo simulations.
Resumo:
There is a lot of pressure on all the developed and second world countries to produce low emission power and distributed generation (DG) is found to be one of the most viable ways to achieve this. DG generally makes use of renewable energy sources like wind, micro turbines, photovoltaic, etc., which produce power with minimum green house gas emissions. While installing a DG it is important to define its size and optimal location enabling minimum network expansion and line losses. In this paper, a methodology to locate the optimal site for a DG installation, with the objective to minimize the net transmission losses, is presented. The methodology is based on the concept of relative electrical distance (RED) between the DG and the load points. This approach will help to identify the new DG location(s), without the necessity to conduct repeated power flows. To validate this methodology case studies are carried out on a 20 node, 66kV system, a part of Karnataka Transco and results are presented.
Resumo:
Today's SoCs are complex designs with multiple embedded processors, memory subsystems, and application specific peripherals. The memory architecture of embedded SoCs strongly influences the power and performance of the entire system. Further, the memory subsystem constitutes a major part (typically up to 70%) of the silicon area for the current day SoC. In this article, we address the on-chip memory architecture exploration for DSP processors which are organized as multiple memory banks, where banks can be single/dual ported with non-uniform bank sizes. In this paper we propose two different methods for physical memory architecture exploration and identify the strengths and applicability of these methods in a systematic way. Both methods address the memory architecture exploration for a given target application by considering the application's data access characteristics and generates a set of Pareto-optimal design points that are interesting from a power, performance and VLSI area perspective. To the best of our knowledge, this is the first comprehensive work on memory space exploration at physical memory level that integrates data layout and memory exploration to address the system objectives from both hardware design and application software development perspective. Further we propose an automatic framework that explores the design space identifying 100's of Pareto-optimal design points within a few hours of running on a standard desktop configuration.
Resumo:
Ultrasonic wave propagation in a graphene sheet, which is embedded in an elastic medium, is studied using nonlocal elasticity theory incorporating small-scale effects. The graphene sheet is modeled as an one-atom thick isotropic plate and the elastic medium/substrate is modeled as distributed springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. After that, an ultrasonic type of wave propagation model is also derived. The explicit expressions for the cut-off frequencies are also obtained as functions of the nonlocal scaling parameter and the y-directional wavenumber. Local elasticity shows that the wave will propagate even at higher frequencies. But nonlocal elasticity predicts that the waves can propagate only up to certain frequencies (called escape frequencies), after which the wave velocity becomes zero. The results also show that the escape frequencies are purely a function of the nonlocal scaling parameter. The effect of the elastic medium is captured in the wave dispersion analysis and this analysis is explained with respect to both local and nonlocal elasticity. The simulations show that the elastic medium affects only the flexural wave mode in the graphene sheet. The presence of the elastic matrix increases the band gap of the flexural mode. The present results can provide useful guidance for the design of next-generation nanodevices in which graphene-based composites act as a major element.
Resumo:
Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4769889]
Resumo:
Channel-aware assignment of sub-channels to users in the downlink of an OFDMA system demands extensive feedback of channel state information (CSI) to the base station. Since the feedback bandwidth is often very scarce, schemes that limit feedback are necessary. We develop a novel, low feedback splitting-based algorithm for assigning each sub-channel to its best user, i.e., the user with the highest gain for that sub-channel among all users. The key idea behind the algorithm is that, at any time, each user contends for the sub-channel on which it has the largest channel gain among the unallocated sub-channels. Unlike other existing schemes, the algorithm explicitly handles multiple access control aspects associated with the feedback of CSI. A tractable asymptotic analysis of a system with a large number of users helps design the algorithm. It yields 50% to 65% throughput gains compared to an asymptotically optimal one-bit feedback scheme, when the number of users is as small as 10 or as large as 1000. The algorithm is fast and distributed, and scales with the number of users.
Resumo:
This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.
Resumo:
The following paper presents a Powerline Communication (PLC) Method for grid interfaced inverters, for smart grid application. The PLC method is based on the concept of the composite vector which involves multiple components rotating at different harmonic frequencies. The pulsed information is modulated on the fundamental component of the grid current as a specific repeating sequence of a particular harmonic. The principle of communication is same as that of power flow, thus reducing the complexity. The power flow and information exchange are simultaneously accomplished by the interfacing inverters based on current programmed vector control, thus eliminating the need for dedicated hardware. Simulation results have been shown for inter-inverter communication, both under ideal and distorted conditions, using various harmonic modulating signals.
Resumo:
This paper presents a multi-class support vector machine (SVMs) approach for locating and diagnosing faults in electric power distribution feeders with the penetration of Distributed Generations (DGs). The proposed approach is based on the three phase voltage and current measurements which are available at all the sources i.e. substation and at the connection points of DG. To illustrate the proposed methodology, a practical distribution feeder emanating from 132/11kV-grid substation in India with loads and suitable number of DGs at different locations is considered. To show the effectiveness of the proposed methodology, practical situations in distribution systems (DS) such as all types of faults with a wide range of varying fault locations, source short circuit (SSC) levels and fault impedances are considered for studies. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted feeder section and the fault impedance. The results demonstrate the feasibility of applying the proposed method in practical in smart grid distribution automation (DA) for fault diagnosis.
Resumo:
An opportunistic, rate-adaptive system exploits multi-user diversity by selecting the best node, which has the highest channel power gain, and adapting the data rate to selected node's channel gain. Since channel knowledge is local to a node, we propose using a distributed, low-feedback timer backoff scheme to select the best node. It uses a mapping that maps the channel gain, or, in general, a real-valued metric, to a timer value. The mapping is such that timers of nodes with higher metrics expire earlier. Our goal is to maximize the system throughput when rate adaptation is discrete, as is the case in practice. To improve throughput, we use a pragmatic selection policy, in which even a node other than the best node can be selected. We derive several novel, insightful results about the optimal mapping and develop an algorithm to compute it. These results bring out the inter-relationship between the discrete rate adaptation rule, optimal mapping, and selection policy. We also extensively benchmark the performance of the optimal mapping with several timer and opportunistic multiple access schemes considered in the literature, and demonstrate that the developed scheme is effective in many regimes of interest.
Resumo:
We describe a framework to explore and visualize the movement of cloud systems. Using techniques from computational topology and computer vision, our framework allows the user to study this movement at various scales in space and time. Such movements could have large temporal and spatial scales such as the Madden Julian Oscillation (MJO), which has a spatial scale ranging from 1000 km to 10000 km and time of oscillation of around 40 days. Embedded within these larger scale oscillations are a hierarchy of cloud clusters which could have smaller spatial and temporal scales such as the Nakazawa cloud clusters. These smaller cloud clusters, while being part of the equatorial MJO, sometimes move at speeds different from the larger scale and in a direction opposite to that of the MJO envelope. Hitherto, one could only speculate about such movements by selectively analysing data and a priori knowledge of such systems. Our framework automatically delineates such cloud clusters and does not depend on the prior experience of the user to define cloud clusters. Analysis using our framework also shows that most tropical systems such as cyclones also contain multi-scale interactions between clouds and cloud systems. We show the effectiveness of our framework to track organized cloud system during one such rainfall event which happened at Mumbai, India in July 2005 and for cyclone Aila which occurred in Bay of Bengal during May 2009.
Resumo:
The distributed, low-feedback, timer scheme is used in several wireless systems to select the best node from the available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal metric-to-timer mappings for the practical scenario where the number of nodes is unknown. We consider two cases in which the probability distribution of the number of nodes is either known a priori or is unknown. In the first case, the optimal mapping maximizes the success probability averaged over the probability distribution. In the second case, a robust mapping maximizes the worst case average success probability over all possible probability distributions on the number of nodes. Results reveal that the proposed mappings deliver significant gains compared to the mappings considered in the literature.
Resumo:
We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width similar to 5 nm, the simulated ON current is found to be in the range of 265 mu A-280 mu A with an ON/OFF ratio 7.1 x 10(6)-7.4 x 10(6) for a V-DD = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%. (C) 2014 AIP Publishing LLC.
Resumo:
We discuss the computational bottlenecks in molecular dynamics (MD) and describe the challenges in parallelizing the computation-intensive tasks. We present a hybrid algorithm using MPI (Message Passing Interface) with OpenMP threads for parallelizing a generalized MD computation scheme for systems with short range interatomic interactions. The algorithm is discussed in the context of nano-indentation of Chromium films with carbon indenters using the Embedded Atom Method potential for Cr-Cr interaction and the Morse potential for Cr-C interactions. We study the performance of our algorithm for a range of MPI-thread combinations and find the performance to depend strongly on the computational task and load sharing in the multi-core processor. The algorithm scaled poorly with MPI and our hybrid schemes were observed to outperform the pure message passing scheme, despite utilizing the same number of processors or cores in the cluster. Speed-up achieved by our algorithm compared favorably with that achieved by standard MD packages. (C) 2013 Elsevier Inc. All rights reserved.