902 resultados para Discrete optimisation
Resumo:
In this paper, we address the problem of robust information embedding in digital data. Such a process is carried out by introducing modifications to the original data that one would like to keep minimal. It assumes that the data, which includes the embedded information, is corrupted before the extraction is carried out. We propose a principled way to tailor an efficient embedding process for given data and noise statistics. © Springer-Verlag Berlin Heidelberg 2005.
Resumo:
Nonlinearity management is explored as a multilevel tool to obtain maximum transmission reach in a WDM system. A technique for the fast calculation of the optimal dispersion pre-compensation in systems with distributed amplification is proposed. © 2005 Optical Society of America.
Resumo:
A statistics-based method using genetic algorithms for predicting discrete sequences is presented. The prediction of the next value is based upon a fixed number of previous values and the statistics offered by the training data. According to the statistics, in similar past cases different values occurred next. If these values are considered with the appropriate weights, the forecast is successful. Weights are generated by genetic algorithms.
Resumo:
Numerical optimisation of a 40 Gbit/s dispersion-managed soliton transmission system with in-line synchronous intensity modulation is performed. Using a time-saving numerical approach, superiority of the modified synchronous modulation over conventional synchronous modulation is demonstrated and an optimal operational regime is found.
Resumo:
We present an analysis of the performance of backward-pumped discrete Raman amplifier modules designed for simultaneous amplification and dispersion and/or dispersion slope compensation, both in single-channel and in multichannel systems. Optimal module parameters are determined within a realistic range of pump and signal powers.
Resumo:
Parameter optimization of a two-stage Raman fibre converters (RFC) based on phosphosilicate core fiber was presented. The optimal operational regime was determined and tolerance of the converter against variations of laser parameters was analyzed. Converter was pumped by ytterbium-doped double-clad fibre laser with a maximum output power of 3.8W at 1061 nm. A phosphosilicate-core RFC with enhanced performance was fabricated using the results of numerical modelling.
Resumo:
We propose a taxonomy for heterogeneity and dynamics of swarms in PSO, which separates the consideration of homogeneity and heterogeneity from the presence of adaptive and non-adaptive dynamics, both at the particle and swarm level. It thus supports research into the separate and combined contributions of each of these characteristics. An analysis of the literature shows that most recent work has focussed on only parts of the taxonomy. Our results agree with prior work that both heterogeneity and dynamics are useful. However while heterogeneity does typically improve PSO, this is often dominated by the improvement due to dynamics. Adaptive strategies used to generate heterogeneity may end up sacrificing the dynamics which provide the greatest performance increase. We evaluate exemplar strategies for each area of the taxonomy and conclude with recommendations.
Resumo:
Lyophilisation or freeze drying is the preferred dehydrating method for pharmaceuticals liable to thermal degradation. Most biologics are unstable in aqueous solution and may use freeze drying to prolong their shelf life. Lyophilisation is however expensive and has seen lots of work aimed at reducing cost. This thesis is motivated by the potential cost savings foreseen with the adoption of a cost efficient bulk drying approach for large and small molecules. Initial studies identified ideal formulations that adapted well to bulk drying and further powder handling requirements downstream in production. Low cost techniques were used to disrupt large dried cakes into powder while the effects of carrier agent concentration were investigated for powder flowability using standard pharmacopoeia methods. This revealed superiority of crystalline mannitol over amorphous sucrose matrices and established that the cohesive and very poor flow nature of freeze dried powders were potential barriers to success. Studies from powder characterisation showed increased powder densification was mainly responsible for significant improvements in flow behaviour and an initial bulking agent concentration of 10-15 %w/v was recommended. Further optimisation studies evaluated the effects of freezing rates and thermal treatment on powder flow behaviour. Slow cooling (0.2 °C/min) with a -25°C annealing hold (2hrs) provided adequate mechanical strength and densification at 0.5-1 M mannitol concentrations. Stable bulk powders require powder transfer into either final vials or intermediate storage closures. The targeted dosing of powder formulations using volumetric and gravimetric powder dispensing systems where evaluated using Immunoglobulin G (IgG), Lactate Dehydrogenase (LDH) and Beta Galactosidase models. Final protein content uniformity in dosed vials was assessed using activity and protein recovery assays to draw conclusions from deviations and pharmacopeia acceptance values. A correlation between very poor flowability (p<0.05), solute concentration, dosing time and accuracy was revealed. LDH and IgG lyophilised in 0.5 M and 1 M mannitol passed Pharmacopeia acceptance values criteria with 0.1-4 while formulations with micro collapse showed the best dose accuracy (0.32-0.4% deviation). Bulk mannitol content above 0.5 M provided no additional benefits to dosing accuracy or content uniformity of dosed units. This study identified considerations which included the type of protein, annealing, cake disruption process, physical form of the phases present, humidity control and recommended gravimetric transfer as optimal for dispensing powder. Dosing lyophilised powders from bulk was demonstrated as practical, time efficient, economical and met regulatory requirements in cases. Finally the use of a new non-destructive technique, X-ray microcomputer tomography (MCT), was explored for cake and particle characterisation. Studies demonstrated good correlation with traditional gas porosimetry (R2 = 0.93) and morphology studies using microscopy. Flow characterisation from sample sizes of less than 1 mL was demonstrated using three dimensional X-ray quantitative image analyses. A platinum-mannitol dispersion model used revealed a relationship between freezing rate, ice nucleation sites and variations in homogeneity within the top to bottom segments of a formulation.
Resumo:
We present an optimization procedure to improve the propagation properties of the depressed cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm can be optimized beyond 3 micro meter for hexagonal WG structures with seven rings of tracks.
Resumo:
In this paper we examine discrete functions that depend on their variables in a particular way, namely the H-functions. The results obtained in this work make the “construction” of these functions possible. H-functions are generalized, as well as their matrix representation by Latin hypercubes.
Resumo:
The body of work presented in this thesis are in three main parts: [1] the effect of ultrasound on freezing events of ionic systems, [2] the importance of formulation osmolality in freeze drying, and [3] a novel system for increasing primary freeze drying rate. Chapter 4 briefly presents the work on method optimisation, which is still very much in its infancy. Aspects of freezing such as nucleation and ice crystal growth are strongly related with ice crystal morphology; however, the ice nucleation process typically occurs in a random, non-deterministic and spontaneous manner. In view of this, ultrasound, an emerging application in pharmaceutical sciences, has been applied to aid in the acceleration of nucleation and shorten the freezing process. The research presented in this thesis aimed to study the effect of sonication on nucleation events in ionic solutions, and more importantly how sonication impacts on the freezing process. This work confirmed that nucleation does occur in a random manner. It also showed that ultrasonication aids acceleration of the ice nucleation process and increases the freezing rate of a solution. Cryopreservation of animal sperm is an important aspect of breeding in animal science especially for endangered species. In order for sperm cryopreservation to be successful, cryoprotectants as well as semen extenders are used. One of the factors allowing semen preservation media to be optimum is the osmolality of the semen extenders used. Although preservation of animal sperm has no relation with freeze drying of pharmaceuticals, it was used in this thesis to make a case for considering the osmolality of a formulation (prepared for freeze drying) as a factor for conferring protein protection against the stresses of freeze drying. The osmolalities of some common solutes (mostly sugars) used in freeze drying were determined (molal concentration from 0.1m to 1.2m). Preliminary investigation on the osmolality and osmotic coefficients of common solutes were carried out. It was observed that the osmotic coefficient trend for the sugars analysed could be grouped based on the types of sugar they are. The trends observed show the need for further studies to be carried out with osmolality and to determine how it may be of importance to protein or API protection during freeze drying processes. Primary drying is usually the longest part of the freeze drying process, and primary drying times lasting days or even weeks are not uncommon; however, longer primary drying times lead to longer freeze drying cycles, and consequently increased production costs. Much work has been done previously by others using different processes (such as annealing) in order to improve primary drying times; however, these do not come without drawbacks. A novel system involving the formation of a frozen vial system which results in the creation of a void between the formulation and the inside wall of a vial has been devised to increase the primary freeze drying rate of formulations without product damage. Although the work is not nearly complete, it has been shown that it is possible to improve and increase the primary drying rate of formulations without making any modifications to existing formulations, changing storage vials, or increasing the surface area of freeze dryer shelves.
Resumo:
We study a class of models used with success in the modelling of climatological sequences. These models are based on the notion of renewal. At first, we examine the probabilistic aspects of these models to afterwards study the estimation of their parameters and their asymptotical properties, in particular the consistence and the normality. We will discuss for applications, two particular classes of alternating renewal processes at discrete time. The first class is defined by laws of sojourn time that are translated negative binomial laws and the second class, suggested by Green is deduced from alternating renewal process in continuous time with sojourn time laws which are exponential laws with parameters α^0 and α^1 respectively.
Resumo:
We present and analyze three different online algorithms for learning in discrete Hidden Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves in simplified situations and compare the results. The performance for learning drifting concepts of one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about learning and symmetry breaking based on our results is also presented. © 2006 American Institute of Physics.
Resumo:
* This research was supported by a grant from the Greek Ministry of Industry and Technology.