864 resultados para Direct currents
Resumo:
There are several studies about the cytotoxic effects of dental materials in contact with the pulp tissue, such as calcium hydroxide (CH), adhesive systems, resin composite and glass ionomer cements. The aim of this review article was to summarize and discuss the cytotoxicity and biocompatibility of materials used for protection of the dentin-pulp complex, some components of resin composites and adhesive systems when placed in direct or indirect contact with the pulp tissue. A large number of dental materials present cytotoxic effects when applied close or directly to the pulp, and the only material that seems to stimulate early pulp repair and dentin hard tissue barrier formation is CH.
Resumo:
Purpose: To evaluate clinically and microscopically the human pulp response when directly capped with an adhesive system or calcium hydroxide over short (9-12 days) and long (53-204 days) experimental periods. Materials and Methods: Fifty-one sound human premolars scheduled for orthodontic extraction, had their pulp horns gently exposed with a diamond point. Debris in the pulp wound was washed out with a sterile saline solution. The pulps were then capped with either an adhesive system (Scotchbond Multi-Purpose Plus) or calcium hydroxide. All teeth were subsequently restored with resin-based composite (Z-100) according to the manufacturer's instructions. After the experimental periods, the teeth were extracted and processed for light microscopic examination. Results: Short-term: the pulp tissue capped with SBMP-P exhibited dilated and congested blood vessels associated with a mo;derate inflammatory response and blanching of pulp cell nuclei. Long-term: no evidence of healing and bridge formation was observed. A persistent mild inflammatory pulp response was present. Micro-abscesses were detected in three cases associated with bacterial infiltration. Calcium hydroxide stimulated early pulp repair and dentin bridging which extended into the longest period.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Light dynamics is a relevant phenomenon with respect to esthetic restorations, as incorrect analysis of the optical behavior of natural dentition may lead to potential clinical failures. The nature of incident light plays a major role in determining the amount of light transmission or reflection, and how an object is perceived depends on the nature of the light source. Natural teeth demonstrate translucency, opalescence, and fluorescence, all of which must be replicated by restorative materials in order to achieve clinical success. Translucency is the intermediary between complete opacity and complete transparency, making its analysis highly subjective. In nature, the translucency of dental enamel varies from tooth to tooth, and from individual to individual. Therefore, four important factors must be considered when appraising translucency. Presence or absence of color, thickness of the enamel, degree of translucency, and surface texture are essential components when determining translucency. State-of-the-art resin composites provide varying shades and opacities that deliver a more faithful reproduction of the chromaticity and translucency/opacity of enamel and dentin. This enables the attainment of individualized and customized composite restorations. The objective of this article is to provide a review of the phenomena of translucency and opacity in the natural dentition and composite resins, under the scope of optics, and to describe how to implement these concepts in the clinical setting.CLINICAL SIGNIFICANCEChoosing composite resins, based on optical properties alone, in order to mimic the properties of natural tooth structures, does not necessarily provide a satisfactory esthetic outcome. In many instances, failure ensues from incorrect analysis of the optical behaviors of the natural dentition as well as the improper use of restorative materials. Therefore, it is necessary to implement a technique that enables a restorative material to be utilized to its full potential to correctly replicate the natural teeth.(J Esthet Restor Dent 23:73-88, 2011).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Top-down models for the origin of ultra high energy cosmic rays (UHECR's) propose that these events are the decay products of relic superheavy metastable particles, usually called X particles. These particles can be produced in the reheating period following the inflationary epoch of the early Universe. We obtain constraints on some parameters such as the lifetime and direct couplings of the X-particle to the inflaton field from the requirement that they are responsible for the observed UHECR flux.
Resumo:
We perform a three-body calculation of direct muon-transfer rates from thermalized muonic hydrogen isotopes to bare nuclei Ne10+, S16+ and Ar18+ employing integro-differential Faddeev-Hahn-type equations in configuration space with a two-state close-coupling approximation scheme. All Coulomb potentials including the strong final-state Coulomb repulsion are treated exactly. A long-range polarization potential is included in the elastic channel to take into account the high polarizability of the muonic hydrogen. The transfer rates so-calculated are in good agreement with recent experiments. We find that the muon is captured predominantly in the n = 6, 9 and 10 states of muonic Ne10+, S16+ and Ar18+, respectively.
Resumo:
A submodel of the so-called conformal affine Toda model coupled to the matter field (CATM) is defined such that its real Lagrangian has a positive-definite kinetic term for the Toda field and a usual kinetic term for the (Dirac) spinor field. After spontaneously broken the conformal symmetry by means of BRST analysis, we end up with an effective theory, the off-critical affine Toda model coupled to the matter (ATM). It is shown that the ATM model inherits the remarkable properties of the general CATM model such as the soliton solutions, the particle/soliton correspondence and the equivalence between the Noether and topological currents. The classical solitonic spectrum of the ATM model is also discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
It is proven that the classical pure spinor superstring in an AdS(5) X S-5 background has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et at. for the classical Green-Schwarz superstring.
Resumo:
We discuss the properties of the gravitational energy-momentum 3-form within the tetrad formulation of general relativity theory. We derive the covariance properties of the quantities describing the energy-momentum content under Lorentz transformations of the tetrad. As an application, we consider the computation of the total energy (mass) of some exact solutions of Einstein's general relativity theory which describe compact sources with asymptotically flat spacetime geometry. As it is known, depending on the choice of tetrad frame, the formal total integral for such configurations may diverge. We propose a natural regularization method which yields finite values for the total energy-momentum of the system and demonstrate how it works on a number of explicit examples.
Resumo:
The D0 Collaboration presents first evidence for the production of single top quarks at the Fermilab Tevatron < p(p)over bar > collider. Using a 0.9 fb(-1) dataset, we apply a multivariate analysis to separate signal from background and measure sigma(< p(p)over bar >-> tb+X,tqb+X)=4.9 +/- 1.4 pb. The probability to measure a cross section at this value or higher in the absence of a signal is 0.035%, corresponding to a 3.4 standard deviation significance. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa matrix element that describes the Wtb coupling and find 0.68
Resumo:
We report the first direct observation of the strange b baryon Xi(-)(b)(Xi) over bar (+)(b)). We reconstruct the decay Xi(-)(b)-->J/psi Xi(-), with J/psi-->mu(+)mu(-), and Xi(-)-->Lambda pi(-)-->p pi(-)pi(-) in p (p) over bar collisions at root s = 1.96 TeV. Using 1.3 fb(-1) of data collected by the D0 detector, we observe 15.2 +/- 4.4(stat)(-0.4)(+1.9)(syst) Xi(-)(b) candidates at a mass of 5.774 +/- 0.011(stat) +/- 0.015(syst) GeV. The significance of the observed signal is 5.5 sigma, equivalent to a probability of 3.3 x 10(-8) of it arising from a background fluctuation. Normalizing to the decay Lambda(b)-->J/psi Lambda, we measure the relative rate sigma(Xi(-)(b))xB(Xi(-)(b)-->J/psi Xi)/ sigma(Lambda(b))xB(Lambda(b)-->J/psi Lambda) = 0.28 +/- 0.09(stat)(-0.08)(+0.09)(syst).
Resumo:
If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general matter field can be obtained from the invariance of the corresponding action integral under transformations taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.
Resumo:
Nonperturbative Wilson coefficients of the operator product expansion (OPE) for the spin-0 glueball correlators are derived and analyzed. A systematic treatment of the direct instanton contributions is given, based on a realistic instanton size distribution and renormalization at the operator scale. In the pseudoscalar channel, topological charge screening is identified as an additional source of (semi-) hard nonperturbative physics. The screening contributions are shown to be vital for consistency with the anomalous axial Ward identity, and previously encountered pathologies (positivity violations and the disappearance of the 0(-+) glueball signal) are traced to their neglect. on the basis of the extended OPE, a comprehensive quantitative analysis of eight Borel-moment sum rules in both spin-0 glueball channels is then performed. The nonperturbative OPE coefficients turn out to be indispensable for consistent sum rules and for their reconciliation with the underlying low-energy theorems. The topological short-distance physics strongly affects the sum rule results and reveals a rather diverse pattern of glueball properties. New predictions for the spin-0 glueball masses and decay constants and an estimate of the scalar glueball width are given, and several implications for glueball structure and experimental glueball searches are discussed.