1000 resultados para Digital toolkit
Resumo:
Inter-digital capacitive electrodes working as electric field sensors have been developed for touch panel applications. Evaluation circuits to convert variations in electric fields in such sensors into computer compatible data are commercially available. We report development of an Interdigital capacitive electrode working as a sensitive pressure sensor in the range 0-120 kPa. Essentially it is a touch/proximity sensor converted into a pressure sensor with a suitable elastomer buffer medium acting as the pressure transmitter. The performance of the sensor has been evaluated and reported. Such sensors can be made very economical in comparison to existing pressure sensors. Moreover, they are very convenient to be fabricated into sensor arrays involving a number of sensors for distributed pressure sensing applications such as in biomedical systems.
Resumo:
Residue Number System (RNS) based Finite Impulse Response (FIR) digital filters and traditional FIR filters. This research is motivated by the importance of an efficient filter implementation for digital signal processing. The comparison is done in terms of speed and area requirement for various filter specifications. RNS based FIR filters operate more than three times faster and consumes only about 60% of the area than traditional filter when number of filter taps is more than 32. The area for RNS filter is increasing at a lesser rate than that for traditional resulting in lower power consumption. RNS is a nonweighted number system without carry propogation between different residue digits.This enables simultaneous parallel processing on all the digits resulting in high speed addition and multiplication in the RNS domain
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
Long Term Digital Preservation (LTDP) is a secure and trustworthy mechanism to ingest, process, store, manage, protect, find, access, and interpret digital information such that the same information can be used at some arbitrary point in the future in spite of obsolescence of everything: hardware, software, processes, format, people, etc
Resumo:
The purpose of this paper is to describe the design and development of a digital library at Cochin University of Science and Technology (CUSAT), India, using DSpace open source software. The study covers the structure, contents and usage of CUSAT digital library. Design/methodology/approach – This paper examines the possibilities of applying open source in libraries. An evaluative approach is carried out to explore the features of the CUSAT digital library. The Google Analytics service is employed to measure the amount of use of digital library by users across the world. Findings – CUSAT has successfully applied DSpace open source software for building a digital library. The digital library has had visits from 78 countries, with the major share from India. The distribution of documents in the digital library is uneven. Past exam question papers share the major part of the collection. The number of research papers, articles and rare documents is less. Originality/value – The study is the first of its type that tries to understand digital library design and development using DSpace open source software in a university environment with a focus on the analysis of distribution of items and measuring the value by usage statistics employing the Google Analytics service. The digital library model can be useful for designing similar systems
Resumo:
The effective organization and utilisation of resources produced by the students, faculty and research scholars in university departments assume greater significance. Institutional repositories are developed by many institutions to provide resources and materials that support students in their studies. The present study recognizes the value of such a repository in the Engineering and Technology discipline in Cochin University of Science and Technology. The paper explains the need for a digital repository ofproject reports. The authors present a modelfor digital repository, and the organization.and administration of such a repository. The study also analyses the various other factors associated with the proposed depository.
Resumo:
Combinational digital circuits can be evolved automatically using Genetic Algorithms (GA). Until recently this technique used linear chromosomes and and one dimensional crossover and mutation operators. In this paper, a new method for representing combinational digital circuits as 2 Dimensional (2D) chromosomes and suitable 2D crossover and mutation techniques has been proposed. By using this method, the convergence speed of GA can be increased significantly compared to the conventional methods. Moreover, the 2D representation and crossover operation provides the designer with better visualization of the evolved circuits. In addition to this, a technique to display automatically the evolved circuits has been developed with the help of MATLAB
Resumo:
This paper presents a new approach to the design of combinational digital circuits with multiplexers using Evolutionary techniques. Genetic Algorithm (GA) is used as the optimization tool. Several circuits are synthesized with this method and compared with two design techniques such as standard implementation of logic functions using multiplexers and implementation using Shannon’s decomposition technique using GA. With the proposed method complexity of the circuit and the associated delay can be reduced significantly
Resumo:
The assessment of maturity of software is an important area in the general software sector. The field of OSS also applies various models to measure software maturity. However, measuring maturity of OSS being used for several applications in libraries is an area left with no research so far. This study has attempted to fill the research gap. Measuring maturity of software contributes knowledge on its sustainability over the long term. Maturity of software is one of the factors that positively influence adoption. The investigator measured the maturity of DSpace software using Woods and Guliani‟s Open Source Maturity Model-2005. The present study is significant as it addresses the aspects of maturity of OSS for libraries and fills the research gap on the area. In this sense the study opens new avenues to the field of library and information science by providing an additional tool for librarians in the selection and adoption of OSS. Measuring maturity brings in-depth knowledge on an OSS which will contribute towards the perceived usefulness and perceived ease of use as explained in the Technology Acceptance Model theory.
Resumo:
The most widely used methods to assess the nitrogen (N) status of winter wheat (Triticum aestivum L.) are the determination of plant total N by combustion, the testing of nitrate in the leaf tissue and the use of SPAD readings. However, due to their labor requirements or high costs these methods can hardly be applied to the huge wheat growing areas of the Northern China Plain. This study therefore examined an alternative method to measure the N status of wheat by using a digital camera to record the visible green light reflected from the plant canopy. The experiment was conducted near Beijing in a multi-factorial field trial with three levels of N. The intensity of green light reflected from the wheat canopy was compared to the total N concentration, to the nitrate concentration of the basal stem, and to the SPAD readings of leaves. The results show significant inverse relationships between greenness intensity, canopy total N, and SPAD readings at booting and flowering. At booting, sap nitrate <2000mgL^-1 was inversely related to greenness intensity and to sap nitrate concentration in the basal stem. At sap nitrate ~2000mgL^-1, the greenness intensity reached a plateau. At booting and flowering, significant inverse relationships between greenness intensity and shoot biomass were found. The results show the potential of the new method to assess the N status of winter wheat.
Resumo:
Speckle Pattern Shearing Interferometrie (Shearografie) ist eine speckle-interferometrische Messmethode und zeichnet sich durch die ganzflächige, berührungslose Arbeitsweise, hohe räumliche Auflösung und hohe Messempfindlichkeit aus. Diese Dissertation beinhaltet die neue bzw. weitere Entwicklung der Shearografie zur qualitativen Schwingungsbeobachtung und zur quantitativen Schwingungsmessung. Für die qualitative Schwingungsbeobachtung in Echtzeit werden die Optimierung des Zeitmittelungsverfahrens und die neue entwickelte Online-Charakterisierung von Streifenmustern mit statistischen Verfahren vorgestellt. Auf dieser Basis können sowohl eine genaue Fehlstellen-Detektion bei der zerstörungsfreien Materialprüfung als auch eine präzise Resonanzuntersuchung zeitsparend und vollautomatisch durchgeführt werden. Für die quantitative Schwingungsmessung wird eine sog. dynamische Phasenschiebe-Technik neu entwickelt, welche durch die Einführung eines synchron zum Objekt schwingenden Referenzspiegels realisiert wird. Mit dieser Technik ermöglicht das Zeitmittelungsverfahren die Amplituden und Phasen einer Objektschwingung quantitativ zu ermitteln. Auch eine Weiterentwicklung des stroboskopischen Verfahrens in Kombination mit zeitlicher Phasenverschiebung wird in der Arbeit präsentiert, womit der gesamte Prozess der Schwingungsmessung und -rekonstruktion beschleunigt und automatisch durchgeführt wird. Zur Bestimmung des Verschiebungsfeldes aus den gemessenen Amplituden und Phasen des Verformungsgradienten stellt diese Arbeit auch eine Weiterentwicklung des Summationsverfahrens vor. Das Verfahren zeichnet sich dadurch aus, dass die Genauigkeit des ermittelten Verschiebungsfelds unabhängig von der Sheargröße ist und gleichzeitig das praktische Problem - Unstetigkeit - gelöst wird. Eine quantitative Messung erfordert eine genaue Kalibrierung der gesamten Messkette. Ein auf dem Least-Square-Verfahren basierendes Kalibrierverfahren wird in der Arbeit zur Kalibrierung der statischen und dynamischen Phasenverschiebung vorgestellt. Auch die Ermittelung der Sheargröße mit Hilfe der 1D- bzw. 2D-Kreuz-Korrelation wird präsentiert. Zum Schluss wurde die gesamte Entwicklung durch eine Vergleichsmessung mit einem handelsüblichen Scanning-Laser-Doppler-Vibrometer experimentell verifiziert.
Resumo:
Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.
Resumo:
The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.
Resumo:
Sweden’s recent report on Urban Sustainable Development calls out a missing link between the urban design process and citizens. This paper investigates if engaging citizens as design agents by providing a platform for alternate participation can bridge this gap, through the transfer of spatial agency and new modes of critical cartography. To assess whether this is the case, the approaches are applied to Stockholm’s urban agriculture movement in a staged intervention. The aim of the intervention was to engage citizens in locating existing and potential places for growing food and in gathering information from these sites to inform design in urban agriculture. The design-based methodologies incorporated digital and bodily interfaces for this cartography to take place. The Urban CoMapper, a smartphone digital app, captured real-time perspectives through crowd-sourced mapping. In the bodily cartography, participant’s used their bodies to trace the site and reveal their sensorial perceptions. The data gathered from these approaches gave way to a mode of artistic research for exploring urban agriculture, along with inviting artists to be engaged in the dialogues. In sum, results showed that a combination of digital and bodily approaches was necessary for a critical cartography if we want to engage citizens holistically into the urban design process as spatial agents informing urban policy. Such methodologies formed a reflective interrogation and encouraged a new intimacy with nature, in this instance, one that can transform our urban conduct by questioning our eating habits: where we get our food from and how we eat it seasonally.