998 resultados para Diffusion Chambers, Culture
Resumo:
We calculate noninteger moments ¿tq¿ of first passage time to trapping, at both ends of an interval (0,L), for some diffusion and dichotomous processes. We find the critical behavior of ¿tq¿, as a function of q, for free processes. We also show that the addition of a potential can destroy criticality.
Resumo:
We present exact equations and expressions for the first-passage-time statistics of dynamical systems that are a combination of a diffusion process and a random external force modeled as dichotomous Markov noise. We prove that the mean first passage time for this system does not show any resonantlike behavior.
Resumo:
We study the motion of an unbound particle under the influence of a random force modeled as Gaussian colored noise with an arbitrary correlation function. We derive exact equations for the joint and marginal probability density functions and find the associated solutions. We analyze in detail anomalous diffusion behaviors along with the fractal structure of the trajectories of the particle and explore possible connections between dynamical exponents of the variance and the fractal dimension of the trajectories.
Resumo:
This bibliography was compiled by two reference librarians, Patricia Dawson and David Hudson with the goal of making it easier of tracking down material on Iowa history and culture. This supplements the Iowa History Reference Guide published in 1952 by William Petersen.
Resumo:
A simple model of diffusion of innovations in a social network with upgrading costs is introduced. Agents are characterized by a single real variable, their technological level. According to local information, agents decide whether to upgrade their level or not, balancing their possible benefit with the upgrading cost. A critical point where technological avalanches display a power-law behavior is also found. This critical point is characterized by a macroscopic observable that turns out to optimize technological growth in the stationary state. Analytical results supporting our findings are found for the globally coupled case.
Resumo:
We prove that Brownian market models with random diffusion coefficients provide an exact measure of the leverage effect [J-P. Bouchaud et al., Phys. Rev. Lett. 87, 228701 (2001)]. This empirical fact asserts that past returns are anticorrelated with future diffusion coefficient. Several models with random diffusion have been suggested but without a quantitative study of the leverage effect. Our analysis lets us to fully estimate all parameters involved and allows a deeper study of correlated random diffusion models that may have practical implications for many aspects of financial markets.
Resumo:
Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mixtures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correlation functions and related diffusion coefficients have been calculated. Special attention has been paid to the dynamic cross correlations which have been computed through recently introduced relative mean molecular velocity correlation functions which are independent on the reference frame. The differences between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-fixed, number-fixed, and solvent-fixed) are discussed.
Resumo:
We study the motion of a particle governed by a generalized Langevin equation. We show that, when no fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to superdiffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact equations for the joint and marginal probability density functions for the position and velocity of the particle and find their solutions.
Resumo:
Peroxynitrite induced in vitro a dose dependent toxicity on retinal pigmented epithelial (RPE) cells. Cell death was partially mediated by apoptosis as demonstrated by nuclear fragmentation and TdT-mediated dUTP nick-end labeling assay. Peroxynitrite-induced tyrosine nitration was revealed by immunocytochemistry, both in the cytoplasm and in the nucleus of the cells. Nitration was not observed in RPE cells, producing nitric oxide (NO) after stimulation by lipopolysacharide and interferon-g (IFN-gamma), suggesting that peroxynitrite was not formed in vitro in such conditions. Peroxynitrite could be responsible for the retinal damages observed in pathological conditions in which NO has been demonstrated to be involved. In this context, EGb761, identified as a free radical scavenger, was showed herein to protect RPE cells against peroxynitrite injury.
Resumo:
Preface The starting point for this work and eventually the subject of the whole thesis was the question: how to estimate parameters of the affine stochastic volatility jump-diffusion models. These models are very important for contingent claim pricing. Their major advantage, availability T of analytical solutions for characteristic functions, made them the models of choice for many theoretical constructions and practical applications. At the same time, estimation of parameters of stochastic volatility jump-diffusion models is not a straightforward task. The problem is coming from the variance process, which is non-observable. There are several estimation methodologies that deal with estimation problems of latent variables. One appeared to be particularly interesting. It proposes the estimator that in contrast to the other methods requires neither discretization nor simulation of the process: the Continuous Empirical Characteristic function estimator (EGF) based on the unconditional characteristic function. However, the procedure was derived only for the stochastic volatility models without jumps. Thus, it has become the subject of my research. This thesis consists of three parts. Each one is written as independent and self contained article. At the same time, questions that are answered by the second and third parts of this Work arise naturally from the issues investigated and results obtained in the first one. The first chapter is the theoretical foundation of the thesis. It proposes an estimation procedure for the stochastic volatility models with jumps both in the asset price and variance processes. The estimation procedure is based on the joint unconditional characteristic function for the stochastic process. The major analytical result of this part as well as of the whole thesis is the closed form expression for the joint unconditional characteristic function for the stochastic volatility jump-diffusion models. The empirical part of the chapter suggests that besides a stochastic volatility, jumps both in the mean and the volatility equation are relevant for modelling returns of the S&P500 index, which has been chosen as a general representative of the stock asset class. Hence, the next question is: what jump process to use to model returns of the S&P500. The decision about the jump process in the framework of the affine jump- diffusion models boils down to defining the intensity of the compound Poisson process, a constant or some function of state variables, and to choosing the distribution of the jump size. While the jump in the variance process is usually assumed to be exponential, there are at least three distributions of the jump size which are currently used for the asset log-prices: normal, exponential and double exponential. The second part of this thesis shows that normal jumps in the asset log-returns should be used if we are to model S&P500 index by a stochastic volatility jump-diffusion model. This is a surprising result. Exponential distribution has fatter tails and for this reason either exponential or double exponential jump size was expected to provide the best it of the stochastic volatility jump-diffusion models to the data. The idea of testing the efficiency of the Continuous ECF estimator on the simulated data has already appeared when the first estimation results of the first chapter were obtained. In the absence of a benchmark or any ground for comparison it is unreasonable to be sure that our parameter estimates and the true parameters of the models coincide. The conclusion of the second chapter provides one more reason to do that kind of test. Thus, the third part of this thesis concentrates on the estimation of parameters of stochastic volatility jump- diffusion models on the basis of the asset price time-series simulated from various "true" parameter sets. The goal is to show that the Continuous ECF estimator based on the joint unconditional characteristic function is capable of finding the true parameters. And, the third chapter proves that our estimator indeed has the ability to do so. Once it is clear that the Continuous ECF estimator based on the unconditional characteristic function is working, the next question does not wait to appear. The question is whether the computation effort can be reduced without affecting the efficiency of the estimator, or whether the efficiency of the estimator can be improved without dramatically increasing the computational burden. The efficiency of the Continuous ECF estimator depends on the number of dimensions of the joint unconditional characteristic function which is used for its construction. Theoretically, the more dimensions there are, the more efficient is the estimation procedure. In practice, however, this relationship is not so straightforward due to the increasing computational difficulties. The second chapter, for example, in addition to the choice of the jump process, discusses the possibility of using the marginal, i.e. one-dimensional, unconditional characteristic function in the estimation instead of the joint, bi-dimensional, unconditional characteristic function. As result, the preference for one or the other depends on the model to be estimated. Thus, the computational effort can be reduced in some cases without affecting the efficiency of the estimator. The improvement of the estimator s efficiency by increasing its dimensionality faces more difficulties. The third chapter of this thesis, in addition to what was discussed above, compares the performance of the estimators with bi- and three-dimensional unconditional characteristic functions on the simulated data. It shows that the theoretical efficiency of the Continuous ECF estimator based on the three-dimensional unconditional characteristic function is not attainable in practice, at least for the moment, due to the limitations on the computer power and optimization toolboxes available to the general public. Thus, the Continuous ECF estimator based on the joint, bi-dimensional, unconditional characteristic function has all the reasons to exist and to be used for the estimation of parameters of the stochastic volatility jump-diffusion models.
Resumo:
OBJECTIVE: To assess porcine urothelial cell cultures and the in vitro induction of urothelial stratification in long-term cultures, to study their morphological, functional and genetic behaviour, and thus provide potential autologous urothelium for tissue-engineered substitutes for demucosalized gastric or colonic tissue. MATERIALS AND METHODS: Primary cultures of porcine urothelium were established and the cells passaged thereafter. Cell specificity was confirmed by cytokeratin analysis, cell membrane stability assessed using lactate dehydrogenase leakage, cell de-differentiation by gamma-glutamyl transferase activity and genomic stability by karyotype investigations. Histology and scanning electron microscopy were performed to study the cultured cells and the stratified constructs. Furthermore, collagen matrices were tested as cell scaffolds. RESULTS: The cells were cultured for 180 days; 10 subcultures were established during this period. Stratification was induced in a culture flask and on a collagen matrix. Cytokeratins 7, 8, 17 and 18 were expressed in all cultures, and cell membranes were stable, with no evident de-differentiation. The cultures were stable in their genotype and no chromosomal aberrations were found. The histology and immunohistochemistry of the stratified porcine constructs, and cell membrane stability and cell de-differentiation, were compared with those in the human system. CONCLUSION: Pig and human urothelial cells can be cultured over a long period with no signs of senescence. Urothelial stratification can be induced in vitro. The collagen matrix seems to be an excellent scaffold, allowing cell adherence and growth.