967 resultados para Differential equations, Nonlinear -- Numerical solutions -- Computer programs
Resumo:
Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
In this work we discuss the problem of smooth and analytic regularity for hyperfunction solutions to linear partial differential equations with analytic coefficients. In particular we show that some well known ""sum of squares"" operators, which satisfy Hormander`s condition and consequently are hypoelliptic, admit hyperfunction solutions that are not smooth (in particular they are not distributions).
Resumo:
In this work we study, in the framework of Colombeau`s generalized functions, the Hamilton-Jacobi equation with a given initial condition. We have obtained theorems on existence of solutions and in some cases uniqueness. Our technique is adapted from the classical method of characteristics with a wide use of generalized functions. We were led also to obtain some general results on invertibility and also on ordinary differential equations of such generalized functions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this paper we describe a new protocol that we call the Curry-Howard protocol between a theory and the programs extracted from it. This protocol leads to the expansion of the theory and the production of more powerful programs. The methodology we use for automatically extracting “correct” programs from proofs is a development of the well-known Curry-Howard process. Program extraction has been developed by many authors, but our presentation is ultimately aimed at a practical, usable system and has a number of novel features. These include 1. a very simple and natural mimicking of ordinary mathematical practice and likewise the use of established computer programs when we obtain programs from formal proofs, and 2. a conceptual distinction between programs on the one hand, and proofs of theorems that yield programs on the other. An implementation of our methodology is the Fred system. As an example of our protocol we describe a constructive proof of the well-known theorem that every graph of even parity can be decomposed into a list of disjoint cycles. Given such a graph as input, the extracted program produces a list of the (non-trivial) disjoint cycles as promised.
Resumo:
We examine bivariate extensions of Aït-Sahalia’s approach to the estimation of univariate diffusions. Our message is that extending his idea to a bivariate setting is not straightforward. In higher dimensions, as opposed to the univariate case, the elements of the Itô and Fokker-Planck representations do not coincide; and, even imposing sensible assumptions on the marginal drifts and volatilities is not sufficient to obtain direct generalisations. We develop exploratory estimation and testing procedures, by parametrizing the drifts of both component processes and setting restrictions on the terms of either the Itô or the Fokker-Planck covariance matrices. This may lead to highly nonlinear ordinary differential equations, where the definition of boundary conditions is crucial. For the methods developed, the Fokker-Planck representation seems more tractable than the Itô’s. Questions for further research include the design of regularity conditions on the time series dependence in the data, the kernels actually used and the bandwidths, to obtain asymptotic properties for the estimators proposed. A particular case seems promising: “causal bivariate models” in which only one of the diffusions contributes to the volatility of the other. Hedging strategies which estimate separately the univariate diffusions at stake may thus be improved.
Resumo:
Na modelagem de sistemas complexos, abordagens analíticas tradicionais com equações diferenciais muitas vezes resultam em soluções intratáveis. Para contornar este problema, Modelos Baseados em Agentes surgem como uma ferramenta complementar, onde o sistema é modelado a partir de suas entidades constituintes e interações. Mercados Financeiros são exemplos de sistemas complexos, e como tais, o uso de modelos baseados em agentes é aplicável. Este trabalho implementa um Mercado Financeiro Artificial composto por formadores de mercado, difusores de informações e um conjunto de agentes heterogêneos que negociam um ativo através de um mecanismo de Leilão Duplo Contínuo. Diversos aspectos da simulação são investigados para consolidar sua compreensão e assim contribuir com a concepção de modelos, onde podemos destacar entre outros: Diferenças do Leilão Duplo Contínuo contra o Discreto; Implicações da variação do spread praticado pelo Formador de Mercado; Efeito de Restrições Orçamentárias sobre os agentes e Análise da formação de preços na emissão de ofertas. Pensando na aderência do modelo com a realidade do mercado brasileiro, uma técnica auxiliar chamada Simulação Inversa, é utilizada para calibrar os parâmetros de entrada, de forma que trajetórias de preços simulados resultantes sejam próximas à séries de preços históricos observadas no mercado.
Resumo:
This work aims presenting the development of a model and computer simulation of a sucker rod pumping system. This system take into account the well geometry, the flow through the tubing, the dynamic behavior of the rod string and the use of a induction motor model. The rod string were modeled using concentrated parameters, allowing the use of ordinary differential equations systems to simulate it s behavior
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In almost all cases, the goal of the design of automatic control systems is to obtain the parameters of the controllers, which are described by differential equations. In general, the controller is artificially built and it is possible to update its initial conditions. In the design of optimal quadratic regulators, the initial conditions of the controller can be changed in an optimal way and they can improve the performance of the controlled system. Following this idea, a LNU-based design procedure to update the initial conditions of PI controllers, considering the nonlinear plant described by Takagi-Sugeno fuzzy models, is presented. The importance of the proposed method is that it also allows other specifications, such as, the decay rate and constraints on control input and output. The application in the control of an inverted pendulum illustrates the effectively of proposed method.
Resumo:
This paper shows the insertion of corona effect in a transmission line model based on lumped elements. The development is performed considering a frequency-dependent line representation by cascade of pi sections and state equations. Hence, the detailed profile of currents and voltages along the line, described from a non-homogeneous system of differential equations, can be obtained directly in time domain applying numerical or analytic solution integration methods. The corona discharge model is also based on lumped elements and is implemented from the well-know Skilling-Umoto Model.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents simulations of the Electrofluid Dynamic energy conversion process in slender channel devices having very small particles (in both micro and nano scales) as charge carriers. Solutions are discussed for a system composed by coupled differential equations, which includes the equation for the total current along the channel, the equations for total energy and momentum of the mixture (gas and solid particles), the continuity equation and the equations for energy and momentum of a single particle. Results for suspended particles of higher diameters have been previously published in the Literature, but the simulations here presented exhibit an appreciable increase in the values for output currents.
Resumo:
This work presents simulations of the Electrofluid Dynamic energy conversion process in slender channel devices having very small particles (in both micro and nano scales) as charge carriers. Solutions are discussed for a system composed by coupled differential equations, which includes the equation for the total current along the channel, the equations for total energy and momentum of the mixture (gas and solid particles), the continuity equation and the equations for energy and momentum of a single particle. Results for suspended particles of higher diameters have been previously published in the Literature, but the simulations here presented exhibit an appreciable increase in the values for output currents.