891 resultados para Difference Equations with Maxima
Resumo:
Supersymmetry is formulated for integrable models based on the sl(2 1) loop algebra endowed with a principal gradation. The symmetry transformations which have half-integer grades generate supersymmetry. The sl(2 1) loop algebra leads to N=2 supersymmetric mKdV and sinh-Gordon equations. The corresponding N=1 mKdV and sinh-Gordon equations are obtained via reduction induced by twisted automorphism. Our method allows for a description of a non-local symmetry structure of supersymmetric integrable models. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dermatophytes are adapted to infect skin, hair and nails by their ability to utilize keratin as a nutrient source. Trichophyton rubrum is an anthropophilic fungus, causing up to 90% of chronic cases of dermatophytosis. The understanding of the complex interactions between the fungus and its host should include the identification of genes expressed during infection. To identify the genes involved in the infection process, representational difference analysis (RDA) was applied to two cDNA populations from T. rubrum, one transcribed from the RNA of fungus cultured in the presence of keratin and the other from RNA generated during fungal growth in minimal medium. The analysis identified differentially expressed transcripts. Genes related to signal transduction, membrane protein, oxidative stress response, and some putative virulence factors were up-regulated during the contact of the fungus with keratin. The expression patterns of these genes were also verified by real-time PCR, in conidia of T. rubrum infecting primarily cultured human keratinocytes in vitro, revealing their potential role in the infective process. A better understanding of this interaction will contribute significantly to our knowledge of the process of dermatophyte infection.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to verify the effects of aerobic and combined training on the body composition and lipid profile of obese postmenopausal women and to analyze which of these models is more effective after equalizing the training load. Sixty five postmenopausal women (age=61.0±6.3 years) were divided into three groups: Aerobic Training (AT,n= 15), Combined Training (CT,[strength+aerobic],n=32) and control group (CG,n=18). Their body composition: upper body fat (TF), fat mass (FM), percentage of fat mass and fat free mass (FFM) were estimated by DXA. The lipid profile, total cholesterol, HDL-cholesterol and LDL-cholesterol were assessed. There was a statistically significant difference in the TF (AT= -4.4 %, CT= -4.4%, and CG= 1.0%, p= 0.001) and FFM (AT= 1.7%, CT= 2.6%, and CG= -1.4%, p= 0.0001) between the experimental and the control groups. Regarding the percentage of body fat, there was a statistically significant difference only between the CT and CG groups (AT= -2.8%, CT= -3.9% and CG= 0.31%, p= 0.004). When training loads were equalized, the aerobic and combined training decreased core fat and increased fat-free mass, but only the combined training potentiated a reduction in percentage of body fat in obese postmenopausal women after the training program. HDL-c levels increased in the combined group and the chol/HDL ratio (atherogenic index) decreased in the aerobic group, however, there were no significant differences between the intervention programs. Taken together, both the exercise training programs were effective for improving body composition and inducing an anti-atherogenic status.
Resumo:
This paper studies the average control problem of discrete-time Markov Decision Processes (MDPs for short) with general state space, Feller transition probabilities, and possibly non-compact control constraint sets A(x). Two hypotheses are considered: either the cost function c is strictly unbounded or the multifunctions A(r)(x) = {a is an element of A(x) : c(x, a) <= r} are upper-semicontinuous and compact-valued for each real r. For these two cases we provide new results for the existence of a solution to the average-cost optimality equality and inequality using the vanishing discount approach. We also study the convergence of the policy iteration approach under these conditions. It should be pointed out that we do not make any assumptions regarding the convergence and the continuity of the limit function generated by the sequence of relative difference of the alpha-discounted value functions and the Poisson equations as often encountered in the literature. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we establish the existence of many rotationally non-equivalent and nonradial solutions for the following class of quasilinear problems (p) {-Delta(N)u = lambda f(vertical bar x vertical bar, u) x is an element of Omega(r), u > 0 x is an element of Omega(r), u = 0 x is an element of Omega(r), where Omega(r) = {x is an element of R-N : r < vertical bar x vertical bar < r + 1}, N >= 2, N not equal 3, r >0, lambda > 0, Delta(N)u = div(vertical bar del u vertical bar(N-2)del u) is the N-Laplacian operator and f is a continuous function with exponential critical growth.
Resumo:
There is no consensus regarding the accuracy of bioimpedance for the determination of body composition in older persons. This study aimed to compare the assessment of lean body mass of healthy older volunteers obtained by the deuterium dilution method (reference) with those obtained by two frequently used bioelectrical impedance formulas and one formula specifically developed for a Latin-American population. A cross-sectional study. Twenty one volunteers were studied, 12 women, with mean age 72 +/- 6.7 years. Urban community, Ribeiro Preto, Brazil. Fat free mass was determined, simultaneously, by the deuterium dilution method and bioelectrical impedance; results were compared. In bioelectrical impedance, body composition was calculated by the formulas of Deuremberg, Lukaski and Bolonchuck and Valencia et al. Lean body mass of the studied volunteers, as determined by bioelectrical impedance was 37.8 +/- 9.2 kg by the application of the Lukaski e Bolonchuk formula, 37.4 +/- 9.3 kg (Deuremberg) and 43.2 +/- 8.9 kg (Valencia et. al.). The results were significantly correlated to those obtained by the deuterium dilution method (41.6 +/- 9.3 Kg), with r=0.963, 0.932 and 0.971, respectively. Lean body mass obtained by the Valencia formula was the most accurate. In this study, lean body mass of older persons obtained by the bioelectrical impedance method showed good correlation with the values obtained by the deuterium dilution method. The formula of Valencia et al., developed for a Latin-American population, showed the best accuracy.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.
Resumo:
We use a conceptual model to investigate how randomly varying building heights within a city affect the atmospheric drag forces and the aerodynamic roughness length of the city. The model is based on the assumptions regarding wake spreading and mutual sheltering effects proposed by Raupach (Boundary-Layer Meteorol 60:375-395, 1992). It is applied both to canopies having uniform building heights and to those having the same building density and mean height, but with variability about the mean. For each simulated urban area, a correction is determined, due to height variability, to the shear stress predicted for the uniform building height case. It is found that u (*)/u (*R) , where u (*) is the friction velocity and u (*R) is the friction velocity from the uniform building height case, is expressed well as an algebraic function of lambda and sigma (h) /h (m) , where lambda is the frontal area index, sigma (h) is the standard deviation of the building height, and h (m) is the mean building height. The simulations also resulted in a simple algebraic relation for z (0)/z (0R) as a function of lambda and sigma (h) /h (m) , where z (0) is the aerodynamic roughness length and z (0R) is z (0) found from the original Raupach formulation for a uniform canopy. Model results are in keeping with those of several previous studies.
Resumo:
The relative advantages of cruciate retaining or cruciate resecting total knee replacement are still controversial. If the posterior cruciate ligament (PCL) is preserved, it should be properly balanced. In a previous study, it was demonstrated that increasing the flexion gap leads to an anterior translation of the tibia relative to the femur. Based on these results, we hypothesized that cutting the PCL increases the flexion gap and lessens anterior tibial translation.