868 resultados para Dialkylzinc reagents


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last few years, significant advances have been made in understanding how a yeast cell responds to the stress of producing a recombinant protein, and how this information can be used to engineer improved host strains. The molecular biology of the expression vector, through the choice of promoter, tag and codon optimization of the target gene, is also a key determinant of a high-yielding protein production experiment. Recombinant Protein Production in Yeast: Methods and Protocols examines the process of preparation of expression vectors, transformation to generate high-yielding clones, optimization of experimental conditions to maximize yields, scale-up to bioreactor formats and disruption of yeast cells to enable the isolation of the recombinant protein prior to purification. Written in the highly successful Methods in Molecular Biology™ series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Back in 2003, we published ‘MAX’ randomisation, a process of non-degenerate saturation mutagenesis using exactly 20 codons (one for each amino acid) or else any required subset of those 20 codons. ‘MAX’ randomisation saturates codons located in isolated positions within a protein, as might be required in enzyme engineering, or else on one face of an alpha-helix, as in zinc finger engineering. Since that time, we have been asked for an equivalent process that can saturate multiple, contiguous codons in a non-degenerate manner. We have now developed ‘ProxiMAX’ randomisation, which does just that: generating DNA cassettes for saturation mutagenesis without degeneracy or bias. Offering an alternative to trinucleotide phosphoramidite chemistry, ProxiMAX randomisation uses nothing more sophisticated than unmodified oligonucleotides and standard molecular biology reagents. Thus it requires no specialised chemistry, reagents nor equipment and simply relies on a process of saturation cycling comprising ligation, amplification and digestion for each cycle. The process can encode both unbiased representation of selected amino acids or else encode them in pre-defined ratios. Each saturated position can be defined independently of the others. We demonstrate accurate saturation of up to 11 contiguous codons. As such, ProxiMAX randomisation is particularly relevant to antibody engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ProxiMAX randomisation achieves saturation mutagenesis of contiguous codons without degeneracy or bias. Offering an alternative to trinucleotide phosphoramidite chemistry, it uses nothing more sophisticated than unmodified oligonucleotides and standard molecular biology reagents and as such, requires no specialised chemistry, reagents nor equipment. When particular residues are known to affect protein activity/specificity, their combinatorial replacement with all 20 amino acids, or a subset thereof, can provide a rapid route to generating proteins with desirable characteristics. Conventionally, saturation mutagenesis replaced key codons with degenerate ones. Although simple to perform, that procedure resulted in unnecessarily large libraries, termination codons and inherent uneven amino acid representation. ProxiMAX randomisation is an enzyme-based technique that can encode unbiased representation of all or selected amino acids or else can provide required codons in pre-defined ratios. Each saturated position can be defined independently of the others. ProxiMAX randomisation is achieved via saturation cycling: an iterative process comprising blunt end ligation, amplification and digestion with a Type IIS restriction enzyme. We demonstrate both unbiased saturation of a short 6-mer peptide and saturation of a hypervariable region of a scfv antibody fragment, where 11 contiguous codons are saturated with selected codons, in pre-defined ratios. As such, ProxiMAX randomisation is particularly relevant to antibody engineering. The development of ProxiMAX randomisation from concept to reality is described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods: In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings: We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions: The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein. © 2014 Jiwaji et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Back in 2003, we published ‘MAX’ randomisation, a process of non-degenerate saturation mutagenesis using exactly 20 codons (one for each amino acid) or else any required subset of those 20 codons. ‘MAX’ randomisation saturates codons located in isolated positions within a protein, as might be required in enzyme engineering, or else on one face of an alpha-helix, as in zinc finger engineering. Since that time, we have been asked for an equivalent process that can saturate multiple, contiguous codons in a non-degenerate manner. We have now developed ‘ProxiMAX’ randomisation, which does just that: generating DNA cassettes for saturation mutagenesis without degeneracy or bias. Offering an alternative to trinucleotide phosphoramidite chemistry, ProxiMAX randomisation uses nothing more sophisticated than unmodified oligonucleotides and standard molecular biology reagents. Thus it requires no specialised chemistry, reagents nor equipment and simply relies on a process of saturation cycling comprising ligation, amplification and digestion for each cycle. The process can encode both unbiased representation of selected amino acids or else encode them in pre-defined ratios. Each saturated position can be defined independently of the others. We demonstrate accurate saturation of up to 11 contiguous codons. As such, ProxiMAX randomisation is particularly relevant to antibody engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper immobilized on a functionalized silica support is a good catalyst for the homocoupling of terminal alkynes. The so-called Glaser-Hay coupling reaction can be run in air with catalytic amounts of base. The copper catalyst is active for multiple substituted alkynes, in both polar and non-polar solvents, with good to excellent yields (75-95%). Depending on the alkyne, full conversion can be achieved within 3-24 h. The catalyst was characterized by TGA, inductively coupled plasma and X-ray photoelectron spectroscopy. Leaching tests confirm that the catalyst is and remains heterogeneous. Importantly, the overall reaction requires only alkyne and oxygen (in this case, air) as reagents, making this a clean catalytic oxidative coupling reaction. © 2012 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactions of chloroform over triphenylphosphine-protected Au nanoparticles have been studied using electron paramagnetic resonance (EPR) spectroscopy and a spin trapping technique. Two competing reactions, abstraction of hydrogen and halogen atoms, were identified. The hydrogen abstraction reaction showed an inverse kinetic isotope effect. Treatment of nanoparticles with oxidizing or reducing reagents made it possible to tune the selectivity of radical formation from halogen to hydrogen (deuterium) abstraction. Treatment with PbO2 promoted the deuterium abstraction reaction followed by the loss of nanoparticle activity, whereas treatment with NaBH4 regenerated the nanoparticle activity towards Cl atom abstraction. X-ray photoelectron spectroscopy showed an increased Au:P ratio upon treatment with oxidizing reagents. This is likely due to the oxidation of some phosphine ligands to phosphine oxides which then desorb from the nanoparticle surface. © 2009 The Royal Societ of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two series of novel modified silicas have been prepared in which individual dendritic branches have been attached to aminopropylsilica using standard peptide coupling methodology. The dendritic branches are composed of enantiomerically pure l-lysine building blocks, and hence, the modified silicas have the potential to act as chiral stationary phases in chromatography. In one series of modified silicas, the surface of the dendritic branch consists of Boc carbamate groups, whereas the other has benzoyl amide surface groups. Different coupling reagents have been investigated in order to maximize the loading onto the solid phase. The new supported dendritic materials have been fully characterized with properties of the bulk material determined by elemental analysis, 13C NMR, and IR spectroscopy, whereas XPS provides important information about the surface of the modified silica exposed to the incident X-rays, the key region in which potential chromatographic performance of these materials will take place. Although the bulk analyses indicate that loading of the dendritic branch onto silica decreases with increasing dendritic generation (and consequently steric bulk), XPS indicates that the optimum surface coverage is actually obtained at the second generation of dendritic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The accurate in silico identification of T-cell epitopes is a critical step in the development of peptide-based vaccines, reagents, and diagnostics. It has a direct impact on the success of subsequent experimental work. Epitopes arise as a consequence of complex proteolytic processing within the cell. Prior to being recognized by T cells, an epitope is presented on the cell surface as a complex with a major histocompatibility complex (MHC) protein. A prerequisite therefore for T-cell recognition is that an epitope is also a good MHC binder. Thus, T-cell epitope prediction overlaps strongly with the prediction of MHC binding. In the present study, we compare discriminant analysis and multiple linear regression as algorithmic engines for the definition of quantitative matrices for binding affinity prediction. We apply these methods to peptides which bind the well-studied human MHC allele HLA-A*0201. A matrix which results from combining results of the two methods proved powerfully predictive under cross-validation. The new matrix was also tested on an external set of 160 binders to HLA-A*0201; it was able to recognize 135 (84%) of them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background aims: The selection of medium and associated reagents for human mesenchymal stromal cell (hMSC) culture forms an integral part of manufacturing process development and must be suitable for multiple process scales and expansion technologies. Methods: In this work, we have expanded BM-hMSCs in fetal bovine serum (FBS)- and human platelet lysate (HPL)-containing media in both a monolayer and a suspension-based microcarrier process. Results: The introduction of HPL into the monolayer process increased the BM-hMSC growth rate at the first experimental passage by 0.049 day and 0.127/day for the two BM-hMSC donors compared with the FBS-based monolayer process. This increase in growth rate in HPL-containing medium was associated with an increase in the inter-donor consistency, with an inter-donor range of 0.406 cumulative population doublings after 18 days compared with 2.013 in FBS-containing medium. Identity and quality characteristics of the BM-hMSCs are also comparable between conditions in terms of colony-forming potential, osteogenic potential and expression of key genes during monolayer and post-harvest from microcarrier expansion. BM-hMSCs cultured on microcarriers in HPL-containing medium demonstrated a reduction in the initial lag phase for both BM-hMSC donors and an increased BM-hMSC yield after 6 days of culture to 1.20 ± 0.17 × 105 and 1.02 ± 0.005 × 105 cells/mL compared with 0.79 ± 0.05 × 105 and 0.36 ± 0.04 × 105 cells/mL in FBS-containing medium. Conclusions: This study has demonstrated that HPL, compared with FBS-containing medium, delivers increased growth and comparability across two BM-hMSC donors between monolayer and microcarrier culture, which will have key implications for process transfer during scale-up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapidly rising world populations have sparked growing concerns over global food production to meet this increasing demand. Figures released by The World Bank suggest that a 50 % increase in worldwide cereal production is required by 2030. Primary amines are important intermediates in the synthesis of a wide variety of fine chemicals utilised within the agrochemical industry, and hence new 'greener' routes to their low cost manufacture from sustainable resources would permit significantly enhanced crop yields. Early synthetic pathways to primary amines employed stoichiometric (and often toxic) reagents via multi-step protocols, resulting in a large number of by-products and correspondingly high Environmental factors of 50-100 (compared with 1-5 for typical bulk chemicals syntheses). Alternative catalytic routes to primary amines have proven fruitful, however new issues relating to selectivity and deactivation have slowed commercialisation. The potential of heterogeneous catalysts for nitrile hydrogenation to amines has been demonstrated in a simplified reaction framework under benign conditions, but further work is required to improve the atom economy and energy efficiency through developing fundamental insight into nature of the active species and origin of on-stream deactivation. Supported palladium nanoparticles have been investigated for the hydrogenation of crotononitrile to butylamine (Figure 1) under favourable conditions, and the impact of reaction temperature, hydrogen pressure, support and loading upon activity and selectivity to C=C versus CºN activation assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are situations in which it is very important to quickly and positively identify an individual. Examples include suspects detained in the neighborhood of a bombing or terrorist incident, individuals detained attempting to enter or leave the country, and victims of mass disasters. Systems utilized for these purposes must be fast, portable, and easy to maintain. The goal of this project was to develop an ultra fast, direct PCR method for forensic genotyping of oral swabs. The procedure developed eliminates the need for cellular digestion and extraction of the sample by performing those steps in the PCR tube itself. Then, special high-speed polymerases are added which are capable of amplifying a newly developed 7 loci multiplex in under 16 minutes. Following the amplification, a postage stamp sized microfluidic device equipped with specially designed entangled polymer separation matrix, yields a complete genotype in 80 seconds. The entire process is rapid and reliable, reducing the time from sample to genotype from 1-2 days to under 20 minutes. Operation requires minimal equipment and can be easily performed with a small high-speed thermal-cycler, reagents, and a microfluidic device with a laptop. The system was optimized and validated using a number of test parameters and a small test population. The overall precision was better than 0.17 bp and provided a power of discrimination greater than 1 in 106. The small footprint, and ease of use will permit this system to be an effective tool to quickly screen and identify individuals detained at ports of entry, police stations and remote locations. The system is robust, portable and demonstrates to the forensic community a simple solution to the problem of rapid determination of genetic identity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although group 14 organometallic compounds (Si, Sn) have been well developed as transmetallation reagents in cross-coupling reactions, the application of organogermanium compounds as cross-coupling reagents is still a relatively new area with few papers published. This study aimed to develop methods for the synthesis of new classes of vinyl germane and vinyl silane compounds, mainly Z and E tris(trimethylsilyl)germanes and silanes, which were then applied to Pd-catalyzed cross-couplings with aryl and alkenyl halides. The stereoselective radical-mediated desulfonylation of vinyl sulfones with tris(trimethyl)germanium or silane hydrides provided access to the synthesis of trans vinyl germanes or silanes. Alternatively hydrogermylation or hydrosilylation of terminal alkynes gave cis vinyl germanes or silanes. The application of these new classes of organometallic compounds in cross-coupling reactions with various aryl and alkenyl halides under aqueous [NaOH/H2O2/Pd(PPh 3)4] and anhydrous [KH/t-BuOOH/Pd(PPh 3)4] oxidative conditions were investigated. ^ It was found that the vinyl tris(trimethylsilyl)germanes successfully underwent Pd-catalyzed cross-couplings with aryl and alkenyl halides and aryl triflates under aqueous and anhydrous oxidative conditions. These procedures provided examples of "ligand-free" Pd-catalyzed coupling of organogermanes with aryl and alkenyl halides. Interestingly, couplings with fluorinated vinyl germanes appeared to occur more easily than with the corresponding (α-fluoro)vinyl stannanes and silanes since neither addition of an extra ligand nor activation with fluoride was necessary. The vinyl tris(trimethyl)silanes were found to be alternative substrates for the Hiyama reaction. The coupling of TTMS-silanes with various aryl, heteroaryl as well as alkenyl halides proceeded smoothly upon treatment with hydrogen peroxide in the presence of sodium hydroxide and fluoride ion. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease. ^ On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'-C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard deprotection afforded the desired analogue as 5' E isomer of the inseparable mixture of 9'R/S diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5'atom and S at C9' atom. The 5'-bromovinyl analogue was synthesized using the bromination-dehydrobromination strategy with pyridinium tribromide and DBU. ^ Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pd-catalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1-haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Z-fluoroalkenes. The highest yields were obtained with PdCl 2(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh3)4. Couplings of 1,1-dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product. ^