972 resultados para Developmental coordination disorder (DCD)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: With the increased survival of very preterm infants, there is a growing concern for their developmental and socioemotional outcomes. The quality of the early mother-infant relationship has been noted as 1 of the factors that may exacerbate or soften the potentially adverse impact of preterm birth, particularly concerning the infant's later competencies and development. The first purpose of the study was to identify at 6 months of corrected age whether there were specific dyadic mother-infant patterns of interaction in preterm as compared with term mother-infant dyads. The second purpose was to examine the potential impact of these dyadic patterns on the infant's behavioral and developmental outcomes at 18 months of corrected age. METHODS: During a 12-month period (January-December 1998), all preterm infants who were <34 weeks of gestational age and hospitalized at the NICU of the Lausanne University Hospital were considered for inclusion in this longitudinal prospective follow-up study. Control healthy term infants were recruited during the same period from the maternity ward of our hospital. Mother-infant dyads with preterm infants (n = 47) and term infants (n = 25) were assessed at 6 months of corrected age during a mother-infant play interaction and coded according to the Care Index. This instrument evaluates the mother's interactional behavior according to 3 scales (sensitivity, control, and unresponsiveness) and the child's interactional behavior according to 4 scales (cooperation, compliance, difficult, and passivity). At 18 months, behavioral outcomes of the children were assessed on the basis of a semistructured interview of the mother, the Symptom Check List. The Symptom Check List explores 4 groups of behavioral symptoms: sleeping problems, eating problems, psychosomatic symptoms, and behavioral and emotional disorders. At the same age, developmental outcomes were evaluated using the Griffiths Developmental Scales. Five areas were evaluated: locomotor, personal-social, hearing and speech, eye-hand coordination, and performance. RESULTS: Among the possible dyadic patterns of interaction, 2 patterns emerge recurrently in mother-infant preterm dyads: a "cooperative pattern" with a sensitive mother and a cooperative-responsive infant (28%) and a "controlling pattern" with a controlling mother and a compulsive-compliant infant (28%). The remaining 44% form a heterogeneous group that gathers all of the other preterm dyads and is composed of 1 sensitive mother-passive infant; 10 controlling mothers with a cooperative, difficult, or passive infant; and 10 unresponsive mothers with a cooperative, difficult, or passive infant. Among the term control subjects, 68% of the dyads are categorized as cooperative pattern dyads, 12% as controlling pattern dyads, and the 20% remaining as heterogeneous dyads. At 18 months, preterm infants of cooperative pattern dyads have similar outcomes as the term control infants. Preterm infants of controlling pattern dyads have significantly fewer positive outcomes as compared with preterm infants of cooperative pattern dyads, as well as compared with term control infants. They display significantly more behavioral symptoms than term infants, including more eating problems than term infants as well as infants from cooperative preterm dyads. Infants of the controlling preterm dyads do not differ significantly for the total development quotient but have worse personal-social development than term infants and worse hearing-speech development than infants from cooperative preterm dyads. The preterm infants of the heterogeneous group have outcomes that can be considered as intermediate with no significant differences compared with preterm infants from the cooperative pattern or the controlling pattern dyads. CONCLUSION: Among mother-preterm infant dyads, we identified 2 specific patterns of interaction that could play either a protective (cooperative pattern) or a risk-precipitating (controlling pattern) role on developmental and behavioral outcome, independent of perinatal risk factors and of the family's socioeconomic background. The controlling pattern is much more prevalent among preterm than term dyads and is related to a less favorable infant outcome. However, the cooperative pattern still represents almost 30% of the preterm dyads, with infants' outcome comparable to the ones of term infants. These results point out the impact of the quality of mother-infant relationship on the infant's outcome. The most important clinical implication should be to support a healthy parent-infant relationship already in the NICU but also in the first months of the infant's life. Early individualized family-based interventions during neonatal hospitalization and transition to home have been shown to reduce maternal stress and depression and increase maternal self-esteem and to improve positive early parent-preterm infant interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In human, neuronal migration disorders are commonly associated with developmental delay, mental retardation, and epilepsy. We describe here a new mouse mutant that develops a heterotopic cortex (HeCo) lying in the dorsolateral hemispheric region, between the homotopic cortex (HoCo) and subcortical white matter. Cross-breeding demonstrated an autosomal recessive transmission. Birthdating studies and immunochemistry for layer-specific markers revealed that HeCo formation was due to a transit problem in the intermediate zone affecting both radially and tangentially migrating neurons. The scaffold of radial glial fibers, as well as the expression of doublecortin is not altered in the mutant. Neurons within the HeCo are generated at a late embryonic age (E18) and the superficial layers of the HoCo have a correspondingly lower cell density and layer thickness. Parvalbumin immunohistochemistry showed the presence of gamma-aminobutyric acidergic cells in the HeCo and the mutant mice have a lowered threshold for the induction of epileptic seizures. The mutant showed a developmental delay but, in contrast, memory function was relatively spared. Therefore, this unique mouse model resembles subcortical band heterotopia observed in human. This model represents a new and rare tool to better understand cortical development and to investigate future therapeutic strategies for refractory epilepsy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malondialdehyde (MDA) is a small, ubiquitous, and potentially toxic aldehyde that is produced in vivo by lipid oxidation and that is able to affect gene expression. Tocopherol deficiency in the vitamin E2 mutant vte2-1 of Arabidopsis thaliana leads to massive lipid oxidation and MDA accumulation shortly after germination. MDA accumulation correlates with a strong visual phenotype (growth reduction, cotyledon bleaching) and aberrant GST1 (glutathione S-transferase 1) expression. We suppressed MDA accumulation in the vte2-1 background by genetically removing tri-unsaturated fatty acids. The resulting quadruple mutant, fad3-2 fad7-2 fad8 vte2-1, did not display the visual phenotype or the aberrant GST1 expression observed in vte2-1. Moreover, cotyledon bleaching in vte2-1 was chemically phenocopied by treatment of wild-type plants with MDA. These data suggest that products of tri-unsaturated fatty acid oxidation underlie the vte2-1 seedling phenotype, including cellular toxicity and gene regulation properties. Generation of the quadruple mutant facilitated the development of an in situ fluorescence assay based on the formation of adducts of MDA with 2-thiobarbituric acid at 37 degrees C. Specificity was verified by measuring pentafluorophenylhydrazine derivatives of MDA and by liquid chromatography analysis of MDA-2-thiobarbituric acid adducts. Potentially applicable to other organisms, this method allowed the localization of MDA pools throughout the body of Arabidopsis and revealed an undiscovered pool of the compound unlikely to be derived from trienoic fatty acids in the vicinity of the root tip quiescent center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collective dynamic properties in Lennard-Jones crystals are investigated by molecular dynamics simulation. The study is focused on properties such as the dynamic structure factors, the longitudinal and transverse currents and the density of states. The influence on these properties of the structural disorder is analyzed by comparing the results for one-component crystals with those for liquids and supercooled liquids at analogous conditions. The effects of species-disorder on the collective properties of binary crystals are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Take-off, the most important phase in ski jumping, has been primarily studied in terms of spatio-temporal parameters; little is known about its motor control aspects. This study aims to assess the inter-segment coordination of the shank-thigh and thigh-sacrum pairs using the continuous relative phase (CRP). In total 87 jumps were recorded from 33 athletes with an inertial sensor-based system. The CRP curves indicated that the thighs lead the shanks during the first part of take-off extension and that the shanks rotated faster at the take-off extension end. The thighs and sacrum first rotated synchronously, with the sacrum then taking lead, with finally the thighs rotating faster. Five characteristic features were extracted from the CRP and their relationship with jump length was tested. Three features of the shank-thigh pair and one of the thigh-sacrum pair reported a significant association with jump length. It was observed that athletes who achieved longer jumps had their thighs leading their shanks during a longer time, with these athletes also having a more symmetric movement between thighs and sacrum. This study shows that inter-segment coordination during the take-off extension is related to performance and further studies are necessary to contrast its importance with other ski jumping aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suicidal behavior is commonly associated with depression. Twin studies indicate that both suicidality and major depressive disorder (MDD) are heritable. However, epidemiological evidence suggests that the inheritance of suicidality is likely to be independent of the underlying psychiatric disorder, implying a distinct genetic contribution to suicidality. We conducted a genomewide linkage search aiming to detect genomic loci that may harbor susceptibility genes contributing to risk for suicidality in recurrent MDD. Affected sibling pair (ASP) variance components analysis was performed using the Depression Network cohort of 971 ASPs. The quantitative trait measuring suicidality as a broad phenotype, encompassing ideation and suicide attempts, was established from Schedules for Clinical Assessment in Neuropsychiatry interview items. We examined 1,060 genotyped microsatellite markers with an average spacing of 3.3 cM. Empirical thresholds for linkage evidence were set by whole-genome simulations (LOD = 2.71 for genomewide significance, 1.71 for suggestive linkage). No genomewide significant findings were found. Marker D3S1234 on 3p14 achieved suggestive linkage and yielded a maximum LOD of 1.853 (P = 0.0017), loci 9p24.3 and 18q22-q23 achieved LOD scores >1.5. We found some support for linkage to 2p12 (LOD = 1.2, P = 0.0087) which was previously implicated in linkage studies of suicidality. Our follow-up meta-analysis of five studies showed strong linkage to this region (P = 2 × 10(-6) ). In conclusion, this study analyzed suicidality as a continuous trait in MDD. We found modest evidence for linkage on 3p14. Our meta-analysis supports previous evidence of linkage to suicidality on 2p12. Some candidate genes in these regions may plausibly be implicated in suicidality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-temperature isothermal magnetization curves, M(H), of SmCo4 and Fe3Tb thin films are studied according to the two-dimensional correlated spin-glass model of Chudnovsky. We have calculated the magnetization law in approach to saturation and shown that the M(H) data fit well the theory at high and low fields. In our fit procedure we have used three different correlation functions. The Gaussian decay correlation function fits well the experimental data for both samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H3K4me3 is a histone modification that accumulates at the transcription-start site (TSS) of active genes and is known to be important for transcription activation. The way in which H3K4me3 is regulated at TSS and the actual molecular basis of its contribution to transcription remain largely unanswered. To address these questions, we have analyzed the contribution of dKDM5/LID, the main H3K4me3 demethylase in Drosophila, to the regulation of the pattern of H3K4me3. ChIP-seq results show that, at developmental genes, dKDM5/LID localizes at TSS and regulates H3K4me3. dKDM5/LID target genes are highly transcribed and enriched in active RNApol II and H3K36me3, suggesting a positive contribution to transcription. Expression-profiling show that, though weakly, dKDM5/LID target genes are significantly downregulated upon dKDM5/LID depletion. Furthermore, dKDM5/LID depletion results in decreased RNApol II occupancy, particularly by the promoter-proximal Pol lloser5 form. Our results also show that ASH2, an evolutionarily conserved factor that locates at TSS and is required for H3K4me3, binds and positively regulates dKDM5/LID target genes. However, dKDM5/LID and ASH2 do not bind simultaneously and recognize different chromatin states, enriched in H3K4me3 and not, respectively. These results indicate that, at developmental genes, dKDM5/LID and ASH2 coordinately regulate H3K4me3 at TSS and that this dynamic regulation contributes to transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Why mating types exist at all is subject to much debate. Among hypotheses, mating types evolved to control organelle transmission during sexual reproduction, or to prevent inbreeding or same-clone mating. Here I review data from a diversity of taxa (including ciliates, algae, slime molds, ascomycetes, and basidiomycetes) to show that the structure and function of mating types run counter the above hypotheses. I argue instead for a key role in triggering developmental switches. Genomes must fulfill a diversity of alternative programs along the sexual cycle. As a haploid gametophyte, an individual may grow vegetatively (through haploid mitoses), or initiate gametogenesis and mating. As a diploid sporophyte, similarly, it may grow vegetatively (through diploid mitoses) or initiate meiosis and sporulation. Only diploid sporophytes (and not haploid gametophytes) should switch on the meiotic program. Similarly, only haploid gametophytes (not sporophytes) should switch on gametogenesis and mating. And they should only do so when other gametophytes are ready to do the same in the neighborhood. As argued here, mating types have evolved primarily to switch on the right program at the right moment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developmental constraints have been postulated to limit the space of feasible phenotypes and thus shape animal evolution. These constraints have been suggested to be the strongest during either early or mid-embryogenesis, which corresponds to the early conservation model or the hourglass model, respectively. Conflicting results have been reported, but in recent studies of animal transcriptomes the hourglass model has been favored. Studies usually report descriptive statistics calculated for all genes over all developmental time points. This introduces dependencies between the sets of compared genes and may lead to biased results. Here we overcome this problem using an alternative modular analysis. We used the Iterative Signature Algorithm to identify distinct modules of genes co-expressed specifically in consecutive stages of zebrafish development. We then performed a detailed comparison of several gene properties between modules, allowing for a less biased and more powerful analysis. Notably, our analysis corroborated the hourglass pattern at the regulatory level, with sequences of regulatory regions being most conserved for genes expressed in mid-development but not at the level of gene sequence, age, or expression, in contrast to some previous studies. The early conservation model was supported with gene duplication and birth that were the most rare for genes expressed in early development. Finally, for all gene properties, we observed the least conservation for genes expressed in late development or adult, consistent with both models. Overall, with the modular approach, we showed that different levels of molecular evolution follow different patterns of developmental constraints. Thus both models are valid, but with respect to different genomic features.