972 resultados para Damage control (Warships)
Resumo:
Background It is well established that COMT is a strong candidate gene for substance use disorder and schizophrenia. Recently we identified two SNPs in COMT (rs4680 and rs165774) that are associated with schizophrenia in an Australian cohort. Individuals with schizophrenia were more than twice as likely to carry the GG genotype compared to the AA genotype for both the rs165774 and rs4680 SNPs. Association of both rs4680 and rs165774 with substance dependence, a common comorbidity of schizophrenia has not been investigated. Methods To determine whether COMT is important in substance dependence, rs165774 and rs4680 were genotyped and haplotyped in patients with nicotine, alcohol and opiate dependence. Results The rs165774 SNP was associated with alcohol dependence. However, it was not associated with nicotine or opiate dependence. Individuals with alcohol dependence were more than twice as likely to carry the GG or AG genotypes compared to the AA genotype, indicating a dominant mode of inheritance. The rs4680 SNP showed a weak association with alcohol dependence at the allele level that did not reach significance at the genotype level but it was not associated with nicotine or opiate dependence. Analysis of rs165774/rs4680 haplotypes also revealed association with alcohol dependence with the G/G haplotype being almost 1.5 times more common in alcohol-dependent cases. Conclusions Our study provides further support for the importance of the COMT in alcohol dependence in addition to schizophrenia. It is possible that the rs165774 SNP, in combination with rs4680, results in a common molecular variant of COMT that contributes to schizophrenia and alcohol dependence susceptibility. This is potentially important for future studies of comorbidity. As our participant numbers are limited our observations should be viewed with caution until they are independently replicated.
Resumo:
Background With the increasing prevalence of childhood obesity, the metabolic syndrome has been studied among children in many countries but not in Malaysia. Hence, this study aimed to compare metabolic risk factors between overweight/obese and normal weight children and to determine the influence of gender and ethnicity on the metabolic syndrome among school children aged 9-12 years in Kuala Lumpur and its metropolitan suburbs. Methods A case control study was conducted among 402 children, comprising 193 normal-weight and 209 overweight/obese. Weight, height, waist circumference (WC) and body composition were measured, and WHO (2007) growth reference was used to categorise children into the two weight groups. Blood pressure (BP) was taken, and blood was drawn after an overnight fast to determine fasting blood glucose (FBG) and full lipid profile, including triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). International Diabetes Federation (2007) criteria for children were used to identify metabolic syndrome. Results Participants comprised 60.9% (n = 245) Malay, 30.9% (n = 124) Chinese and 8.2% (n = 33) Indian. Overweight/obese children showed significantly poorer biochemical profile, higher body fat percentage and anthropometric characteristics compared to the normal-weight group. Among the metabolic risk factors, WC ≥90th percentile was found to have the highest odds (OR = 189.0; 95%CI 70.8, 504.8), followed by HDL-C≤1.03 mmol/L (OR = 5.0; 95%CI 2.4, 11.1) and high BP (OR = 4.2; 95%CI 1.3, 18.7). Metabolic syndrome was found in 5.3% of the overweight/obese children but none of the normal-weight children (p < 0.01). Overweight/obese children had higher odds (OR = 16.3; 95%CI 2.2, 461.1) of developing the metabolic syndrome compared to normal-weight children. Binary logistic regression showed no significant association between age, gender and family history of communicable diseases with the metabolic syndrome. However, for ethnicity, Indians were found to have higher odds (OR = 5.5; 95%CI 1.5, 20.5) compared to Malays, with Chinese children (OR = 0.3; 95%CI 0.0, 2.7) having the lowest odds. Conclusions We conclude that being overweight or obese poses a greater risk of developing the metabolic syndrome among children. Indian ethnicity is at higher risk compared to their counterparts of the same age. Hence, primary intervention strategies are required to prevent this problem from escalating.
Resumo:
This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the calculation process of the MSEDI, more effectively than the two commonly used curve fitting techniques; namely, polynomial and Fourier’s series. Secondly, a probability based Generalized Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection is enhanced with increased number of modes and samples used with the GDLI.
Resumo:
Secrecy of decryption keys is an important pre-requisite for security of any encryption scheme and compromised private keys must be immediately replaced. \emph{Forward Security (FS)}, introduced to Public Key Encryption (PKE) by Canetti, Halevi, and Katz (Eurocrypt 2003), reduces damage from compromised keys by guaranteeing confidentiality of messages that were encrypted prior to the compromise event. The FS property was also shown to be achievable in (Hierarchical) Identity-Based Encryption (HIBE) by Yao, Fazio, Dodis, and Lysyanskaya (ACM CCS 2004). Yet, for emerging encryption techniques, offering flexible access control to encrypted data, by means of functional relationships between ciphertexts and decryption keys, FS protection was not known to exist.\smallskip In this paper we introduce FS to the powerful setting of \emph{Hierarchical Predicate Encryption (HPE)}, proposed by Okamoto and Takashima (Asiacrypt 2009). Anticipated applications of FS-HPE schemes can be found in searchable encryption and in fully private communication. Considering the dependencies amongst the concepts, our FS-HPE scheme implies forward-secure flavors of Predicate Encryption and (Hierarchical) Attribute-Based Encryption.\smallskip Our FS-HPE scheme guarantees forward security for plaintexts and for attributes that are hidden in HPE ciphertexts. It further allows delegation of decrypting abilities at any point in time, independent of FS time evolution. It realizes zero-inner-product predicates and is proven adaptively secure under standard assumptions. As the ``cross-product" approach taken in FS-HIBE is not directly applicable to the HPE setting, our construction resorts to techniques that are specific to existing HPE schemes and extends them with what can be seen as a reminiscent of binary tree encryption from FS-PKE.
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
Over the last few decades, electric and electromagnetic fields have achieved important role as stimulator and therapeutic facility in biology and medicine. In particular, low magnitude, low frequency, pulsed electromagnetic field has shown significant positive effect on bone fracture healing and some bone diseases treatment. Nevertheless, to date, little attention has been paid to investigate the possible effect of high frequency, high magnitude pulsed electromagnetic field (pulse power) on functional behaviour and biomechanical properties of bone tissue. Bone is a dynamic, complex organ, which is made of bone materials (consisting of organic components, inorganic mineral and water) known as extracellular matrix, and bone cells (live part). The cells give the bone the capability of self-repairing by adapting itself to its mechanical environment. The specific bone material composite comprising of collagen matrix reinforced with mineral apatite provides the bone with particular biomechanical properties in an anisotropic, inhomogeneous structure. This project hypothesized to investigate the possible effect of pulse power signals on cortical bone characteristics through evaluating the fundamental mechanical properties of bone material. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses up to 500 V and 10 kHz. Bone shows distinctive characteristics in different loading mode. Thus, functional behaviour of bone in response to pulse power excitation were elucidated by using three different conventional mechanical tests applying three-point bending load in elastic region, tensile and compressive loading until failure. Flexural stiffness, tensile and compressive strength, hysteresis and total fracture energy were determined as measure of main bone characteristics. To assess bone structure variation due to pulse power excitation in deeper aspect, a supplementary fractographic study was also conducted using scanning electron micrograph from tensile fracture surfaces. Furthermore, a non-destructive ultrasonic technique was applied for determination and comparison of bone elasticity before and after pulse power stimulation. This method provided the ability to evaluate the stiffness of millimetre-sized bone samples in three orthogonal directions. According to the results of non-destructive bending test, the flexural elasticity of cortical bone samples appeared to remain unchanged due to pulse power excitation. Similar results were observed in the bone stiffness for all three orthogonal directions obtained from ultrasonic technique and in the bone stiffness from the compression test. From tensile tests, no significant changes were found in tensile strength and total strain energy absorption of the bone samples exposed to pulse power compared with those of the control samples. Also, the apparent microstructure of the fracture surfaces of PP-exposed samples (including porosity and microcracks diffusion) showed no significant variation due to pulse power stimulation. Nevertheless, the compressive strength and toughness of millimetre-sized samples appeared to increase when the samples were exposed to 66 hours high power pulsed electromagnetic field through screws with small contact cross-section (increasing the pulsed electric field intensity) compare to the control samples. This can show the different load-bearing characteristics of cortical bone tissue in response to pulse power excitation and effectiveness of this type of stimulation on smaller-sized samples. These overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electromagnetic field at 500 V and 10 kHz through capacitive coupling method, was athermal and did not damage the bone tissue construction.
Resumo:
Background to the Problem: Improving nurses' self-efficacy and job satisfaction may improve the quality of nursing care to patients. Moreover, to work effectively and consistently with professional nursing standards, nurses have to believe they are able to make decisions about their practice. In order to identify what strategies and professional development programmes should be developed and implemented for registered nurses in the Australian context, a comprehensive profile of registered nurses and factors that affect nursing care in Australia needs to be available. However, at present, there is limited information available on a) the perceived caring efficacy and job satisfaction of registered nurses in Australia, and b) the relationships between the demographic variables general self-efficacy, work locus of control, coping styles, the professional nursing practice environment and caring efficacy and job satisfaction of registered nurses in Australia. This is the first study to 1) investigate relationships between caring efficacy and job satisfaction with factors such as general self-efficacy, locus of control and coping, 2) the nursing practice environment in the Australian context and 3) conceptualise a model of caring efficacy and job satisfaction in the Australian context. Research Design and Methods: This study used a two-phase cross-sectional survey design. A pilot study was conducted in order to determine the validity and reliability of the survey instruments and to assess the effectiveness of the participant recruitment process. The second study of the research involved investigating the relationships between the socio-demographic, dependent and independent variables. Socio-demographic variables included age, gender, level of education, years of experience, years in current job, employment status, geographical location, specialty area, health sector, state and marital status. Other independent variables in this study included general self-efficacy, work locus of control, coping styles and the professional nursing practice environment. The dependent variables were job satisfaction and caring efficacy. Results: A confirmatory factor analysis of the Brisbane Practice Environment Measure (B-PEM) was conducted. A five-factor structure of the B-PEM was confirmed. Relationships between socio-demographic variables, caring efficacy and job satisfaction, were identified at the bivariate and multivariable levels. Further, examination using structural equation modelling revealed general self-efficacy, work locus of control, coping style and the professional nursing practice environment contributed to caring efficacy and job satisfaction of registered nurses in Australia. Conclusion: This research contributes to the literature on how socio-demographic, personal and environmental variables (work locus of control, general self-efficacy and the nursing practice environment) influence caring efficacy and job satisfaction in registered nurses in Australia. Caring efficacy and job satisfaction may be improved if general self-efficacy is high in those that have an internal work locus of control. The study has also shown that practice environments that provide the necessary resources improve job satisfaction in nurses. The results have identified that the development and implementation of strategies for professional development and orientation programmes that enhance self-efficacy and work locus of control may contribute to better quality nursing practice and job satisfaction. This may further assist registered nurses towards focusing on improving their practice abilities. These strategies along with practice environments that provide the necessary resources for nurses to practice effectively may lead to better job satisfaction. This information is important for nursing leaders, healthcare organisations and policymakers, as the development and implementation of these strategies may lead to better recruitment and retention of nurses. The study results will contribute to the national and international literature on self-efficacy, job satisfaction and nursing practice.
Resumo:
As a part of vital infrastructure and transportation network, bridge structures must function safely at all times. Bridges are designed to have a long life span. At any point in time, however, some bridges are aged. The ageing of bridge structures, given the rapidly growing demand of heavy and fast inter-city passages and continuous increase of freight transportation, would require diligence on bridge owners to ensure that the infrastructure is healthy at reasonable cost. In recent decades, a new technique, structural health monitoring (SHM), has emerged to meet this challenge. In this new engineering discipline, structural modal identification and damage detection have formed a vital component. Witnessed by an increasing number of publications is that the change in vibration characteristics is widely and deeply investigated to assess structural damage. Although a number of publications have addressed the feasibility of various methods through experimental verifications, few of them have focused on steel truss bridges. Finding a feasible vibration-based damage indicator for steel truss bridges and solving the difficulties in practical modal identification to support damage detection motivated this research project. This research was to derive an innovative method to assess structural damage in steel truss bridges. First, it proposed a new damage indicator that relies on optimising the correlation between theoretical and measured modal strain energy. The optimisation is powered by a newly proposed multilayer genetic algorithm. In addition, a selection criterion for damage-sensitive modes has been studied to achieve more efficient and accurate damage detection results. Second, in order to support the proposed damage indicator, the research studied the applications of two state-of-the-art modal identification techniques by considering some practical difficulties: the limited instrumentation, the influence of environmental noise, the difficulties in finite element model updating, and the data selection problem in the output-only modal identification methods. The numerical (by a planer truss model) and experimental (by a laboratory through truss bridge) verifications have proved the effectiveness and feasibility of the proposed damage detection scheme. The modal strain energy-based indicator was found to be sensitive to the damage in steel truss bridges with incomplete measurement. It has shown the damage indicator's potential in practical applications of steel truss bridges. Lastly, the achievement and limitation of this study, and lessons learnt from the modal analysis have been summarised.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
This paper proposes a nonlinear H_infinity controller for stabilization of velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in a windy environment. The suggested controller aims to achieve a steady-state flight condition in the presence of wind gusts such that the host UAV can be maneuvered to avoid collision with other UAVs during cruise flight with safety guarantees. This paper begins with building a proper model capturing flight aerodynamics of UAVs. Then a nonlinear controller is developed with gust attenuation and rapid response properties. Simulations are conducted for the Shadow UAV to verify performance of the proposed con- troller. Comparative studies with the proportional-integral-derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight of UAVs.