986 resultados para DYNAMIC EXERCISE
Resumo:
The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.
Resumo:
The occurrence of cachexia of multifactorial etiology in chronic heart failure (CHF) is a common and underestimated condition that usually leads to poor outcome and low survival rates, with high direct and indirect costs for the Health Care System. Recently, a consensus definition on cachexia has been reached, leading to a growing interest by the scientific community in this condition, which characterizes the last phase of many chronic diseases (i.e., cancer, acquired immunodeficiency syndrome). The etiology of cachexia is multifactorial and the underlying pathophysiological mechanisms are essentially the following: anorexia and malnourishment; immune overactivity and systemic inflammation; and endocrine disorders (anabolic/catabolic imbalance and resistance to growth hormone). In this paper, we review the main pathophysiological mechanisms underlying CHF cachexia, focusing also on the broad spectrum of actions of ghrelin and ghrelin agonists, and their possible use in combination with physical exercise to contrast CHF cachexia.
Resumo:
The major objective of this study was to investigate the effects of several days of intense exercise on the growth hormone marker approach to detect doping with human growth hormone (hGH). In addition we investigated the effect of changes in plasma volume on the test. Fifteen male athletes performed a simulated nine-day cycling stage race. Blood samples were collected twice daily over a period of 15 days (stage race + three days before and after). Plasma volumes were estimated by the optimized CO Rebreathing method. IGF-1 and P-III-NP were analyzed by Siemens Immulite and Cisbio Assays, respectively. All measured GH 2000 scores were far below the published decision limits for an adverse analytical finding. The period of exercise did not increase the GH-scores; however the accompanying effect of the increase in Plasma Volume yielded in essentially lower GH-scores. We could demonstrate that a period of heavy, long-term exercise with changes in plasma volume does not interfere with the decision limits for an adverse analytical finding. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
Dynamic morphological transitions in thin-layer electrodeposits obtained from copper sulphate solutions have been studied. The chemical composition of the electrodeposits indicates that they appear as a consequence of the competition between copper and cuprous oxide formation. In addition, the Ohmic control of the process is verified at initial stages of the deposit growth. At higher deposit developments, gravity-induced convection currents play a role in the control of the whole process and affect the position of these transitions.
Resumo:
We present a nonequlibrium approach for the study of a flexible bilayer whose two components induce distinct curvatures. In turn, the two components are interconverted by an externally promoted reaction. Phase separation of the two species in the surface results in the growth of domains characterized by different local composition and curvature modulations. This domain growth is limited by the effective mixing due to the interconversion reaction, leading to a finite characteristic domain size. In addition to these effects, first introduced in our earlier work [ Phys. Rev. E 71 051906 (2005)], the important new feature is the assumption that the reactive process actively affects the local curvature of the bilayer. Specifically, we suggest that a force energetically activated by external sources causes a modification of the shape of the membrane at the reaction site. Our results show the appearance of a rich and robust dynamical phenomenology that includes the generation of traveling and/or oscillatory patterns. Linear stability analysis, amplitude equations, and numerical simulations of the model kinetic equations confirm the occurrence of these spatiotemporal behaviors in nonequilibrium reactive bilayers.
Resumo:
Introduction Discrepancies appear in studies comparing fat oxidation between men and women during exercise (1). Therefore, this study aimed to quantitatively describe and compare whole body fat oxidation kinetics between genders during exercise using a sinusoidal model (SIN) (2). Methods Twelve men and 11 women matched for age, body mass index (23.4±0.6 kg.m-2 and 21.5±0.8 kg.m-2, respectively) and aerobic fitness [maximal oxygen uptake ( ) (58.5±1.6 mL.kg FFM-1.min-1 and 55.3±2.0 mL.kg FFM-1.min-1, respectively) and power output ( ) per kilogram of fat-free mass (FFM)] performed submaximal incremental tests (Incr) with 5-min stages and 7.5% increment on a cycle ergometer. Respiratory and HR values were averaged over the last 2 minutes of each stage. All female study participants were eumenorrheic, reported regular menstrual cycles (28.6 ± 0.8 days) and were not taking oral contraceptives (OC) or other forms of exogenous ovarian hormones. Women were studied in the early follicular phase (FP) of their menstrual cycle (between days 3 and 8, where day 1 is the first day of menses). Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model (2), which includes three independent variables (dilatation, symmetry, translation), was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). Results During Incr, women exhibited greater fat oxidation rates from 35 to 85% , MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mgkg FFM-1min-1) and Fatmax (58.1 ± 1.9 vs. 50.0 ± 2.7% ) (P<0.05) than men. While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (P>0.05), the fat oxidation curve tended to be shifted towards higher exercise intensities in women (rightward translation, P=0.08). Conclusion These results showed that women, eumenorrheic, not taking OC and tested in FP, have a greater reliance on fat oxidation than men during submaximal exercise, but they also indicate that this greater fat oxidation is shifted towards higher exercise intensities in women compared with men. References 1. Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4: 499-502, 2001. 2. Cheneviere X, Malatesta D, Peters EM, and Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Med Sci Sports Exerc 41: 1615-1625, 2009.
Resumo:
Repeated passaging in conventional cell culture reduces pluripotency and proliferation capacity of human mesenchymal stem cells (MSC). We introduce an innovative cell culture method whereby the culture surface is dynamically enlarged during cell proliferation. This approach maintains constantly high cell density while preventing contact inhibition of growth. A highly elastic culture surface was enlarged in steps of 5% over the course of a 20-day culture period to 800% of the initial surface area. Nine weeks of dynamic expansion culture produced 10-fold more MSC compared with conventional culture, with one-third the number of trypsin passages. After 9 weeks, MSC continued to proliferate under dynamic expansion but ceased to grow in conventional culture. Dynamic expansion culture fully retained the multipotent character of MSC, which could be induced to differentiate into adipogenic, chondrogenic, osteogenic, and myogenic lineages. Development of an undesired fibrogenic myofibroblast phenotype was suppressed. Hence, our novel method can rapidly provide the high number of autologous, multipotent, and nonfibrogenic MSC needed for successful regenerative medicine.
Resumo:
PURPOSE: Exercise improves insulin resistance and is a first line for the prevention and treatment of type 2 diabetes. The extent, however, to which these responses are dose dependent is not known. The purpose of this study was to examine whether exercise dose was associated with improvements in insulin sensitivity after 4 months of exercise training in previously sedentary adults. METHODS: Fifty-five healthy volunteers participated in a 16-wk supervised endurance exercise intervention with a pre/postintervention design. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp, peak oxygen uptake by a graded exercise test, and body composition by dual-energy x-ray absorptiometry. The exercise intervention consisted of three to five sessions per week with a minimum of three sessions supervised. A ramped exercise prescription protocol was used to achieve 75% of peak HR for 45 min per session. Exercise dose, expressed as average kilocalories expended per week, was computed as the product of exercise intensity, duration and frequency. RESULTS: Improved insulin sensitivity was significantly related to exercise dose in a graded dose-response relationship. No evidence of threshold or maximal dose-response effect was observed. Age and gender did not influence this dose-response relationship. Exercise intensity was also significantly related to improvements in insulin sensitivity, whereas frequency was not. CONCLUSIONS: This study identifies a graded dose-response relationship between exercise dose and improvements in insulin sensitivity. The implication of this observation is of importance for the adaptation of exercise prescription in clinical situations.
Resumo:
We describe the use of dynamic combinatorial chemistry (DCC) to identify ligands for the stem-loop structure located at the exon 10-5'-intron junction of Tau pre-mRNA, which is involved in the onset of several tauopathies including frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). A series of ligands that combine the small aminoglycoside neamine and heteroaromatic moieties (azaquinolone and two acridines) have been identified by using DCC. These compounds effectively bind the stem-loop RNA target (the concentration required for 50% RNA response (EC(50)): 2-58 μM), as determined by fluorescence titration experiments. Importantly, most of them are able to stabilize both the wild-type and the +3 and +14 mutated sequences associated with the development of FTDP-17 without producing a significant change in the overall structure of the RNA (as analyzed by circular dichroism (CD) spectroscopy), which is a key factor for recognition by the splicing regulatory machinery. A good correlation has been found between the affinity of the ligands for the target and their ability to stabilize the RNA secondary structure.
Resumo:
Propagation of localized orientational waves, as imaged by Brewster angle microscopy, is induced by low intensity linearly polarized light inside axisymmetric smectic-C confined domains in a photosensitive molecular thin film at the air/water interface (Langmuir monolayer). Results from numerical simulations of a model that couples photoreorientational effects and long-range elastic forces are presented. Differences are stressed between our scenario and the paradigmatic wave phenomena in excitable chemical media.
Resumo:
The chemokine receptor CCR7 is critical for the recirculation of naive T cells. It is required for T cell entry into secondary lymphoid organs (SLO) and for T cell motility and retention within these organs. How CCR7 activity is regulated during these processes in vivo is poorly understood. Here we show strong modulation of CCR7 surface expression and occupancy by the two CCR7 ligands, both in vitro and in vivo. In contrast to blood, T cells in SLO had most surface CCR7 occupied with CCL19, presumably leading to continuous signaling and cell motility. Both ligands triggered CCR7 internalization in vivo as shown in Ccl19(-/-) and plt/plt mice. Importantly, CCR7 occupancy and down-regulation led to strongly impaired chemotactic responses, an effect reversible by CCR7 resensitization. Therefore, during their recirculation, T cells cycle between states of free CCR7 with high ligand sensitivity in blood and occupied CCR7 associated with continual signaling and reduced ligand sensitivity within SLO. We propose that these two states of CCR7 are important to allow the various functions CCR7 plays in T cell recirculation.
Resumo:
OBJECTIVES: To determine the distribution of exercise stages of change in a rheumatoid arthritis (RA) cohort, and to examine patients' perceptions of exercise benefits, barriers, and their preferences for exercise. METHODS: One hundred and twenty RA patients who attended the Rheumatology Unit of a University Hospital were asked to participate in the study. Those who agreed were administered a questionnaire to determine their exercise stage of change, their perceived benefits and barriers to exercise, and their preferences for various features of exercise. RESULTS: Eighty-nine (74%) patients were finally included in the analyses. Their mean age was 58.4 years, mean RA duration 10.1 years, and mean disease activity score 2.8. The distribution of exercise stages of change was as follows: precontemplation (n = 30, 34%), contemplation (n = 11, 13%), preparation (n = 5, 6%), action (n = 2, 2%), and maintenance (n = 39, 45%). Compared to patients in the maintenance stage of change, precontemplators exhibited different demographic and functional characteristics and reported less exercise benefits and more barriers to exercise. Most participants preferred exercising alone (40%), at home (29%), at a moderate intensity (64%), with advice provided by a rheumatologist (34%) or a specialist in exercise and RA (34%). Walking was by far the preferred type of exercise, in both the summer (86%) and the winter (51%). CONCLUSIONS: Our cohort of patients with RA was essentially distributed across the precontemplation and maintenance exercise stages of change. These subgroups of patients exhibit psychological and functional differences that make their needs different in terms of exercise counselling.