924 resultados para DYNAMIC COMPOSITION CHANGES
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.
Resumo:
One of the key objectives of Deep Sea Drilling Project (DSDP) Leg 75 was to shed light on the underlying causes of Cretaceous oceanic anoxia in the South Atlantic by addressing two major hypotheses: productivity productivity-driven anoxia vs. enhanced ocean stratification leading to preservation of organic matter and black shale deposition. Here we present a detailed geochemical dataset from sediments deposited during the Cenomanian/Turonian (C/T) transition and the global oceanic anoxic event 2 (OAE 2) at DSDP Site 530A, located off-shore Namibia (southeast Angola Basin, north of Walvis Ridge). To characterise the succession of alternating black and green shales at this site and to reconstruct the evolution of their paleoenvironmental setting, we have combined data derived from investigations on bulk organic matter, biomarkers and the inorganic fraction. The location of the C/T boundary itself is biostratigraphically not well constrained due to the carbonate-poor (but organic matter-rich) facies of these sediments. The bulk d13Corg record and compound-specific d13C data, in combination with published as well as new biostratigraphic data, enabled us to locate more precisely the C/T boundary at DSDP Site 530A. The compound-specific d13C record is the first of this kind reported from C/T black shales in the South Atlantic. It is employed for paleoenvironmental reconstructions and chemostratigraphic correlation to other C/T sections in order to discuss the paleoceanographic aspects and implications of the observations at DSDP Site 530A in a broader context, e.g., with regard to the potential trigger mechanisms of OAE 2, global changes in black shale deposition and climate. On a stratigraphic level, an approximation and monitoring of the syndepositional degree of oxygen depletion within the sediments/bottom waters in comparison to the upper water column is achieved by comparing normalised concentrations of redox-sensitive trace elements with the abundance of highly source specific molecular compounds. These biomarkers are derived from photoautotrophic and simultaneously anoxygenic green sulphur bacteria (Chlorobiacea) and are interpreted as paleoindicators for events of photic zone euxinia. In contrast to a number of other OAE 2 sections that are characterised by continuous black shale sequences, DSDP Site 530A represents a highly dynamic setting where newly deposited black shales were repeatedly exposed to conditions of subtle bottom water re-oxidation, presumably leading to their progressive alteration into green shales. The frequent alternation between both facies and the related anoxic to slight oxygenated conditions can be best explained by variations in vertical extent of an oxygen minimum zone in response to changes in a highly productive western continental margin setting driven by upwelling.
Resumo:
Basalts from different structural provinces in the ocean basins, such as mid-ocean ridges, island arcs, and oceanic plateaus, show marked differences in major and minor element composition stemming from differences in magma source. In addition, there are variations even within individual provinces, based on such processes as crystal fractionation, secondary alteration, and hydrothermal alteration. It is also known that hydrothermal processes can cause changes in the gas composition of submarine basalts. For example, Zolotarev et al. (1978) have established that hydrothermal alteration frequently causes an increase in the CO2 content of basalts. If the homogeneity in composition and concentration of organic gases in oceanic basalts is associated with degassing during epimagmatic alteration, it would be interesting to investigate the relative abundance of gas phases in young basalts from midoceanic ridges. This chapter deals with the distribution of organic gases and CO2 in young basalts recovered on Leg 65 from the Gulf of California. Our aim was to establish the relationship between gas composition and degree of alteration.
Resumo:
During Leg 195 of the Ocean Drilling Program, Site 1202 was drilled in the subtropical northwestern Pacific Ocean beneath the Kuroshio (Black Current) between northern Taiwan and the Ryukyu Island Arc on the northern flank of the I-Lan Ridge at 1274 m water depth. The upper 110 m of the Site 1202 section, composed of dark grey calcareous silty clay, provide an expanded record of environmental changes during the last 28 kyr. The sediments were deposited at high sedimentation rates between 3.0 and 5.0 m/kyr and peak values of 9.0 m/kyr between 15.1 and 11.2 ka BP. Variations in the modes and sources of detrital sediment input, as inferred from sediment granulometry, mineralogy, and elemental XRF-scanner data, reflect changes in environmental boundary conditions related to sea-level changes, Kuroshio variability, and the climate-driven modes of fluvial runoff. The provenance data point to increased sediment supply from northwestern Taiwan between 28 and 19.5 ka BP and from East China sources between 19.5 and 11.2 ka BP. The change in provenance at 19.5 ka BP reflects increased fluvial runoff from the Yangtze River and strong sediment reworking from the East China Sea shelf in the course of increased humidity and postglacial sea-level rise, particularly after 15.1 ka BP. The Holocene was dominated by sediments that originated from rivers in northeastern Taiwan. For the pre-Holocene period prior to 11.2 ka BP, low portions of sortable silt (63-10 ?m) show that the Kuroshio did not enter the Okinawa Trough, because of low sea-level. In turn, high proportions of sortable silt and sediment provenance from northeastern Taiwan point to strong ocean circulation under the direct and persistent influence of the Kuroshio during the Holocene. The reentrance of the Kuroshio to the Okinawa Trough was heralded by two pulses in relative current strengthening at 11.2 and 9.5 ka BP, as documented by stepwise increases in sortable silt in the lower Holocene section. From a global perspective, environmental changes in the southern Okinawa Trough show affinities to climate change in the western Pacific warm pool with little influence of climate teleconnections from the North Atlantic realm, otherwise seen in many other marine and terrestrial palaeoclimate records from southeastern Asia.
Resumo:
The climate of Marine Isotope Stage (MIS) 11, the interglacial roughly 400,000 years ago, is investigated for four time slices, 416, 410, 400, and 394 ka. The overall picture is that MIS 11 was a relatively warm interglacial in comparison to preindustrial, with Northern Hemisphere (NH) summer temperatures early in MIS 11 (416-410 ka) warmer than preindustrial, though winters were cooler. Later in MIS 11, especially around 400 ka, conditions were cooler in the NH summer, mainly in the high latitudes. Climate changes simulated by the models were mainly driven by insolation changes, with the exception of two local feedbacks that amplify climate changes. Here, the NH high latitudes, where reductions in sea ice cover lead to a winter warming early in MIS 11, as well as the tropics, where monsoon changes lead to stronger climate variations than one would expect on the basis of latitudinal mean insolation change alone, are especially prominent. The results support a northward expansion of trees at the expense of grasses in the high northern latitudes early during MIS 11, especially in northern Asia and North America.
Resumo:
We report the results of downhole stable isotopic (d13Corg [organic carbon] and d15N) and elemental measurements (total organic carbon [TOC], total nitrogen [TN], and carbon/nitrogen [C/N]) of sedimentary organic matter (SOM) along with stable isotopic measurements (d18O and d13C) of left-coiling Neogloboquadrina pachyderma planktonic foraminifers from Ocean Drilling Program Site 1166. TOC and TN measurements indicate a large change from organic-rich preglacial sediments with primary organic matter to organic-poor early glacial and glacial sediments, with mainly recycled organic matter. Results of the stable isotopic measurements of SOM show a range of values that are typical of both marine and terrestrial organic matter, probably reflecting a mixture of the two. However, C/N values are mostly high (>15), suggesting greater input and/or preservation of terrestrial organic matter. Foraminifers are only present in glacial/glaciomarine sediments of latest Pliocene to Pleistocene age at Site 1166 (lithostratigraphic Unit I). The majority of this unit has d13Corg and TOC values that are similar to those of glacial sediments recovered at Site 1167 (lithostratigraphic Unit II) on the slope and may have the same source(s). Although the low resolution of the N. pachyderma (s.) d18O and d13C data set precludes any specific paleoclimatic interpretation, downcore variations in foraminifer d18O and d13C values of 0.5 per mil to 1 per mil amplitude may indicate glacial-interglacial changes in ice volume/temperature in the Prydz Bay region.
Resumo:
Through scanning electron microscope analysis of sediment microfabric, we have evaluated variations in high-resolution shipboard physical properties (index properties and shear strength), sediment components (smear slide determinations), and shore-based calcium carbonate and biogenic silica data from Site 751 (Kerguelen Plateau). The stratigraphic section at this site records a change in biogenic ooze composition from predominantly calcareous (nannofossil) to siliceous (diatom) ooze from ~23 Ma to the present, reflecting expansion of Antarctic water masses during the late Neogene. The profound change in physical properties and sediment character at 40.1 mbsf (~5-6 Ma) evidently records the northward movement of the Polar Front and a change in absolute accumulation rates of sediment at this site. Trends in geotechnical properties with depth at Site 751 allowed us to subdivide the sedimentary column into a number of geotechnical units that reflect changes in depositional and postdepositional processes with time. Geotechnical properties are sensitive to changing sedimentary inputs of primarily siliceous and calcareous microfossils. This allows us to study the physical nature of biostratigraphically-identified hiatuses and variations in environmental conditions linked to the migration of the Polar Front across this region. The analysis of geotechnical properties permits a more detailed division of the sedimentary column than is possible from shipboard lithologic descriptions alone. Our study of the sedimentary microfabric indicates that randomly oriented, elongate pennate diatom valves compose the sediments with highest porosity and water content values, and the lowest density values (wet bulk, dry bulk, and grain density). Conversely, sediments composed of nannofossils and disassociated nannofossil crystallites and little or no siliceous remains have the lowest porosity and water content values, and the highest density values. Samples of mixed siliceous/calcareous composition have intermediate physical property values, but these vary according to the nature of the sedimentary matrix and the state of preservation of individual skeletal elements.
Resumo:
Early diagenetic dolomite beds were sampled during the Ocean Drilling Programme (ODP) Leg 201 at four reoccupied ODP Leg 112 sites on the Peru continental margin (Sites 1227/684, 1228/680, 1229/681 and 1230/685) and analysed for petrography, mineralogy, d13C, d18O and 87Sr/86Sr values. The results are compared with the chemistry, and d13C and 87Sr/86Sr values of the associated porewater. Petrographic relationships indicate that dolomite forms as a primary precipitate in porous diatom ooze and siliciclastic sediment and is not replacing the small amounts of precursor carbonate. Dolomite precipitation often pre-dates the formation of framboidal pyrite. Most dolomite layers show 87Sr/86Sr-ratios similar to the composition of Quaternary seawater and do not indicate a contribution from the hypersaline brine, which is present at a greater burial depth. Also, the d13C values of the dolomite are not in equilibrium with the d13C values of the dissolved inorganic carbon in the associated modern porewater. Both petrography and 87Sr/86Sr ratios suggest a shallow depth of dolomite formation in the uppermost sediment (<30 m below the seafloor). A significant depletion in the dissolved Mg and Ca in the porewater constrains the present site of dolomite precipitation, which co-occurs with a sharp increase in alkalinity and microbial cell concentration at the sulphate-methane interface. It has been hypothesized that microbial 'hot-spots', such as the sulphate-methane interface, may act as focused sites of dolomite precipitation. Varying d13C values from -15 per mil to +15 per mil for the dolomite are consistent with precipitation at a dynamic sulphate-methane interface, where d13C of the dissolved inorganic carbon would likewise be variable. A dynamic deep biosphere with upward and downward migration of the sulphate-methane interface can be simulated using a simple numerical diffusion model for sulphate concentration in a sedimentary sequence with variable input of organic matter. Thus, the study of dolomite layers in ancient organic carbon-rich sedimentary sequences can provide a useful window into the palaeo-dynamics of the deep biosphere.
Resumo:
Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 >=98 wt%. This contrast in SiO2 (and Si/Al) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and Si/Al ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert. The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2 reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnO/Al2O3 ratios that no longer record the depositional signal of the precursor sediment. REE data indicate only subtle diagenetic fractionation across the rare earth series. Ce/Ce* values do not change significantly during diagenesis of either Monterey or DSDP chert. Eu/Eu* decreases slightly during formation of DSDP chert. Normative La/Yb is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REE/Al ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.
Resumo:
Petrographic and geochemical study of basalts in the Kerguelen Plateau basement revealed changes in composition and character of volcanism during development of this tectonovolcanic structure. The Kerguelen Plateau is one of the largest intraplate rises in the World Ocean. It started to form about 120 Ma ago. Age of basalts and overlying sediments shows that plateau formation was in the northwest direction. Basalts of the Kerguelen Plateau basement are products of tholeiitic melts in terms of geochemistry, but differ from mid-ocean ridge basalt (MORB). They are enriched in incompatible trace elements and rare earth elements (REE) relative to MORB, and degree of enrichment varies in basalts from different segments of the plateau. Composition of basalts does not directly depend on their age. Specific features of plateau magmatism are commonly explained in terms of a long-living deep magma plume, which variously interacted with a depleted upper mantle source at different stages of plateau formation. However, taking into account block morphology and deep structure of the plateau, one can suggest that plateau volcanism was initiated by a large fault. As the volcanism prograded to the northwest, depth of fault penetration into the mantle changed. Composition of basalts in the plateau basement was also governed by formation depth of primary melts.
Resumo:
Comprehensive isotopic studies based on data from the Deep Sea Drilling Project have elucidated numerous details of the low- and high-temperature mechanisms of interaction between water and rocks of ocean crustal seismic Layers 1 and 2. These isotopic studies have also identified climatic changes during the Meso-Cenozoic history of oceans. Data on the abundance and isotopic composition of sulfur in the sedimentary layer as well as in rocks of the volcanic basement are more fragmentary than are oxygen and carbon data. In this chapter we specifically concentrate upon isotopic data related to specific features of the mechanisms of low-temperature interaction of water with sedimentary and volcanogenic rocks. The Leg 59 data provide a good opportunity for such lithologic and isotopic studies, because almost 600 meters of basalt flows and sills interbedded with tuffs and volcaniclastic breccias were cored during the drilling of Hole 448A. Moreover, rocks supposedly exposed to hydrothermal alteration play an important role at the deepest horizons of that mass. Sulfur isotopic studies of the character of possible biogenic processes of sulfate reduction in sediments are another focus, as well as the nature and origin of sulfide mineralization in Layer-2 rocks of remnant island arcs. Finally, oxygen and carbon istopic analyses of biogenic carbonates in the cores also enabled us to investigate the effects of changing climatic conditions during the Cenozoic. These results are compared with previous data from adjacent regions of the Pacific Ocean. Thus this chapter describes results of isotopic analyses of: oxygen and sulfur of interstitial water; oxygen and carbon of sedimentary carbonates and of calcite intercalations and inclusions in tuffs and volcaniclastic breccias interbedded with basalt flows; and sulfur of sulfides in these rocks.
Resumo:
To establish a natural background and its temporal and spatial variability for the area around Casey Station in the Windmill Islands, East Antarctica, the authors studied major and trace element concentrations and the distribution of organic matter in marine and lacustrine sediments. A wide range of natural variability in trace metal concentrations was identified between sites and within a time scale of 9 ka (e.g., Ni 5-37 mg/kg, Cu 20-190 mg/kg, Zn 50-300 mg/kg, Pb 4.5- 34 mg/kg). TOC concentrations are as high as 3 wt.% at the marine sites and 20 wt.% at the lacustrine sites, and indicate highly productive ecosystems. These data provide a background upon which the extent of human impact can be established, and existing data indicate negligible levels of disturbance. Geochemical and lithological data for a lacustrine sediment core from Beall Lake confirm earlier interpretation of recent climatic changes based on diatom distribution, and the onset of deglaciation in the northern part of the Windmill Islands between 8.6 and 8.0 ka BP. The results demonstrate that geochemical and lithological data can not only be used to define natural background values, but also to assess long-term climatic changes of a specific environment. Other sites, however, preserve a completely different sedimentary record. Therefore, inferred climatic record, and differences between sites, can be ascribed to differences in elevation, distance from the shore, water depth, and local catchment features. The extreme level of spatial variability seems to be a feature of Antarctic coastal areas, and demonstrates that results obtained from a specific site cannot be easily generalized to a larger area.
Resumo:
The accelerating decrease of Arctic sea ice substantially changes the growth conditions for primary producers, particularly with respect to light. This affects the biochemical composition of sea ice algae, which are an essential high-quality food source for herbivores early in the season. Their high nutritional value is related to their content of polyunsaturated fatty acids (PUFAs), which play an important role for successful maturation, egg production, hatching and nauplii development in grazers. We followed the fatty acid composition of an assemblage of sea ice algae in a high Arctic fjord during spring from the early bloom stage to post bloom. Light conditions proved to be decisive in determining the nutritional quality of sea ice algae, and irradiance was negatively correlated with the relative amount of PUFAs. Algal PUFA content decreased on average by 40 % from April to June, while algal biomass (measured as particulate carbon, C) did not differ. This decrease was even more pronounced when algae were exposed to higher irradiances due to reduced snow cover. The ratio of chlorophyll a (chl a) to C, as well as the level of photoprotective pigments, confirmed a physiological adaptation to higher light levels in algae of poorer nutritional quality. We conclude that high irradiances are detrimental to sea ice algal food quality, and that the biochemical composition of sea ice algae is strongly dependent on growth conditions.