893 resultados para DIFFERENT GENETIC MODELS
Resumo:
Cattle resistance to ticks is measured by the number of ticks infesting the animal. The model used for the genetic analysis of cattle resistance to ticks frequently requires logarithmic transformation of the observations. The objective of this study was to evaluate the predictive ability and goodness of fit of different models for the analysis of this trait in cross-bred Hereford x Nellore cattle. Three models were tested: a linear model using logarithmic transformation of the observations (MLOG); a linear model without transformation of the observations (MLIN); and a generalized linear Poisson model with residual term (MPOI). All models included the classificatory effects of contemporary group and genetic group and the covariates age of animal at the time of recording and individual heterozygosis, as well as additive genetic effects as random effects. Heritability estimates were 0.08 ± 0.02, 0.10 ± 0.02 and 0.14 ± 0.04 for MLIN, MLOG and MPOI models, respectively. The model fit quality, verified by deviance information criterion (DIC) and residual mean square, indicated fit superiority of MPOI model. The predictive ability of the models was compared by validation test in independent sample. The MPOI model was slightly superior in terms of goodness of fit and predictive ability, whereas the correlations between observed and predicted tick counts were practically the same for all models. A higher rank correlation between breeding values was observed between models MLOG and MPOI. Poisson model can be used for the selection of tick-resistant animals. © 2013 Blackwell Verlag GmbH.
Resumo:
The Brazilian Association of Simmental and Simbrasil Cattle Farmers provided 29,510 records from 10,659 Simmental beef cattle; these were used to estimate (co)variance components and genetic parameters for weights in the growth trajectory, based on multi-trait (MTM) and random regression models (RRM). The (co)variance components and genetic parameters were estimated by restricted maximum likelihood. In the MTM analysis, the likelihood ratio test was used to determine the significance of random effects included in the model and to define the most appropriate model. All random effects were significant and included in the final model. In the RRM analysis, different adjustments of polynomial orders were compared for 5 different criteria to choose the best fit model. An RRM of third order for the direct additive genetic, direct permanent environmental, maternal additive genetic, and maternal permanent environment effects was sufficient to model variance structures in the growth trajectory of the animals. The (co)variance components were generally similar in MTM and RRM. Direct heritabilities of MTM were slightly lower than RRM and varied from 0.04 to 0.42 and 0.16 to 0.45, respectively. Additive direct correlations were mostly positive and of high magnitude, being highest at closest ages. Considering the results and that pre-adjustment of the weights to standard ages is not required, RRM is recommended for genetic evaluation of Simmental beef cattle in Brazil. ©FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Rare variants are becoming the new candidates in the search for genetic variants that predispose individuals to a phenotype of interest. Their low prevalence in a population requires the development of dedicated detection and analytical methods. A family-based approach could greatly enhance their detection and interpretation because rare variants are nearly family specific. In this report, we test several distinct approaches for analyzing the information provided by rare and common variants and how they can be effectively used to pinpoint putative candidate genes for follow-up studies. The analyses were performed on the mini-exome data set provided by Genetic Analysis Workshop 17. Eight approaches were tested, four using the trait’s heritability estimates and four using QTDT models. These methods had their sensitivity, specificity, and positive and negative predictive values compared in light of the simulation parameters. Our results highlight important limitations of current methods to deal with rare and common variants, all methods presented a reduced specificity and, consequently, prone to false positive associations. Methods analyzing common variants information showed an enhanced sensibility when compared to rare variants methods. Furthermore, our limited knowledge of the use of biological databases for gene annotations, possibly for use as covariates in regression models, imposes a barrier to further research.
Resumo:
The thesis is set in three different parts, according to the relative experimental models. First, the domestic pig (Sus scrofa) is part of the study on reproductive biotechnologies: the transgenesis technique of Sperm Mediated Gene Transfer is widely studied starting from the quality of the semen, through the study of multiple uptakes of exogenous DNA and lastly used in the production of multi-transgenic blastocysts. Finally we managed to couple the transgenesis pipeline with sperm sorting and therefore produced transgenic embryos of predetermined sex. In the second part of the thesis the attention is on the fruit fly (Drosophila melanogaster) and on its derived cell line: the S2 cells. The in vitro and in vivo models are used to develop and validate an efficient way to knock down the myc gene. First an efficient in vitro protocol is described, than we demonstrate how the decrease in myc transcript remarkably affects the ribosome biogenesis through the study of Polysome gradients, rRNA content and qPCR. In vivo we identified two optimal drivers for the conditional silencing of myc, once the flies are fed with RU486: the first one is throughout the whole body (Tubulin), while the second is a head fat body driver (S32). With these results we present a very efficient model to study the role of myc in multiple aspects of translation. In the third and last part, the focus is on human derived lung fibroblasts (hLF-1), mouse tail fibroblasts and mouse tissues. We developed an efficient assay to quantify the total protein content of the nucleus on a single cell level via fluorescence. We coupled the protocol with classical immunofluorescence so to have at the same time general and particular information, demonstrating that during senescence nuclear proteins increase by 1.8 fold either in human cells, mouse cells and mouse tissues.
Resumo:
Motivation: Population allele frequencies are correlated when populations have a shared history or when they exchange genes. Unfortunately, most models for allele frequency and inference about population structure ignore this correlation. Recent analytical results show that among populations, correlations can be very high, which could affect estimates of population genetic structure. In this study, we propose a mixture beta model to characterize the allele frequency distribution among populations. This formulation incorporates the correlation among populations as well as extending the model to data with different clusters of populations. Results: Using simulated data, we show that in general, the mixture model provides a good approximation of the among-population allele frequency distribution and a good estimate of correlation among populations. Results from fitting the mixture model to a dataset of genotypes at 377 autosomal microsatellite loci from human populations indicate high correlation among populations, which may not be appropriate to neglect. Traditional measures of population structure tend to over-estimate the amount of genetic differentiation when correlation is neglected. Inference is performed in a Bayesian framework.
Resumo:
Human history is punctuated by periods of rapid cultural change. Although archeologists have developed a range of models to describe cultural transitions, in most real examples we do not know whether the processes involved the movement of people or the movement of culture only. With a series of relatively well defined cultural transitions, the British Isles present an ideal opportunity to assess the demographic context of cultural change. Important transitions after the first Paleolithic settlements include the Neolithic, the development of Iron Age cultures, and various historical invasions from continental Europe. Here we show that patterns of Y-chromosome variation indicate that the Neolithic and Iron Age transitions in the British Isles occurred without large-scale male movements. The more recent invasions from Scandinavia, on the other hand, appear to have left a significant paternal genetic legacy. In contrast, patterns of mtDNA and X-chromosome variation indicate that one or more of these pre-Anglo-Saxon cultural revolutions had a major effect on the maternal genetic heritage of the British Isles.
Resumo:
2000 Mathematics Subject Classification: 62H12, 62P99
Resumo:
2016
Resumo:
Understanding the complexities that are involved in the genetics of multifactorial diseases is still a monumental task. In addition to environmental factors that can influence the risk of disease, there is also a number of other complicating factors. Genetic variants associated with age of disease onset may be different from those variants associated with overall risk of disease, and variants may be located in positions that are not consistent with the traditional protein coding genetic paradigm. Latent Variable Models are well suited for the analysis of genetic data. A latent variable is one that we do not directly observe, but which is believed to exist or is included for computational or analytic convenience in a model. This thesis presents a mixture of methodological developments utilising latent variables, and results from case studies in genetic epidemiology and comparative genomics. Epidemiological studies have identified a number of environmental risk factors for appendicitis, but the disease aetiology of this oft thought useless vestige remains largely a mystery. The effects of smoking on other gastrointestinal disorders are well documented, and in light of this, the thesis investigates the association between smoking and appendicitis through the use of latent variables. By utilising data from a large Australian twin study questionnaire as both cohort and case-control, evidence is found for the association between tobacco smoking and appendicitis. Twin and family studies have also found evidence for the role of heredity in the risk of appendicitis. Results from previous studies are extended here to estimate the heritability of age-at-onset and account for the eect of smoking. This thesis presents a novel approach for performing a genome-wide variance components linkage analysis on transformed residuals from a Cox regression. This method finds evidence for a dierent subset of genes responsible for variation in age at onset than those associated with overall risk of appendicitis. Motivated by increasing evidence of functional activity in regions of the genome once thought of as evolutionary graveyards, this thesis develops a generalisation to the Bayesian multiple changepoint model on aligned DNA sequences for more than two species. This sensitive technique is applied to evaluating the distributions of evolutionary rates, with the finding that they are much more complex than previously apparent. We show strong evidence for at least 9 well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least 7 classes in an alignment of four mammals, including human. A pattern of enrichment and depletion of genic regions in the profiled segments suggests they are functionally significant, and most likely consist of various functional classes. Furthermore, a method of incorporating alignment characteristics representative of function such as GC content and type of mutation into the segmentation model is developed within this thesis. Evidence of fine-structured segmental variation is presented.
Resumo:
Three particular geometrical shapes of parallelepiped, cylindrical and spheres were selected from potatoes (aspect ratio = 1:1, 2:1, 3:1), cut beans (length:diameter = 1:1, 2:1, 3:1) and peas respectively. The density variation of food particulates was studied in a batch fluidised bed dryer connected to a heat pump dehumidifier system. Apparent density and bulk density were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50 o C. Relative humidity of hot air was kept at 15% in all drying temperatures. Several empirical relationships were developed for the determination of changes in densities with the moisture content. Simple mathematical models were obtained to relate apparent density and bulk density with moisture content.
Resumo:
Despite considerable success in treatment of early stage localized prostate cancer (PC), acute inadequacy of late stage PC treatment and its inherent heterogeneity poses a formidable challenge. Clearly, an improved understanding of PC genesis and progression along with the development of new targeted therapies are warranted. Animal models, especially, transgenic immunocompetent mouse models, have proven to be the best ally in this respect. A series of models have been developed by modulation of expression of genes implicated in cancer-genesis and progression; mainly, modulation of expression of oncogenes, steroid hormone receptors, growth factors and their receptors, cell cycle and apoptosis regulators, and tumor suppressor genes have been used. Such models have contributed significantly to our understanding of the molecular and pathological aspects of PC initiation and progression. In particular, the transgenic mouse models based on multiple genetic alterations can more accurately address the inherent complexity of PC, not only in revealing the mechanisms of tumorigenesis and progression but also for clinically relevant evaluation of new therapies. Further, with advances in conditional knockout technologies, otherwise embryonically lethal gene changes can be incorporated leading to the development of new generation transgenics, thus adding significantly to our existing knowledge base. Different models and their relevance to PC research are discussed.