969 resultados para DC-DC converters
Resumo:
Tutti gli apparati elettronici richiedono un'alimentazione in tensione continua. Qualunque sia la fonte di energia elettrica, una batteria (in DC) o la rete di distribuzione (in AC), l’alimentatore ha il compito di regolare la tensione continua di uscita per consentire il corretto funzionamento del dispositivo alimentato. La stabilizzazione della tensione DC in uscita deve avvenire nonostante la presenza di ripple e di disturbi sulla alimentazione primaria, di ampie variazioni sulle correnti assorbite dal carico, di ampie escursioni di temperatura e deve essere garantita nel tempo, anche a fronte di sostituzione di alcuni componenti del circuito. In questa tesi si prenderanno in considerazione i regolatori lineari. Sebbene si tratti di circuiti che operano in condizioni di linearità e quindi, quasi per definizione, poco efficienti, in realtà il loro impiego diventa quasi obbligatorio per applicazioni in cui è richiesta una tensione di alimentazione poco rumorosa. Se utilizzati a valle di un alimentatore switching possono aumentare notevolmente la qualità della tensione di uscita operando con livelli di efficienza e di dissipazione del tutto accettabili e con minimo aumento di costo del sistema. Gli alimentatori lineari non sono dunque “superati” dai più recenti alimentatori switching ma sono, piuttosto, “alternativi” e, in molti alimentatori moderni, di complemento. Per questo motivo, anche di recente, sono stati sviluppati e trovano importanti quote di mercato innovative architetture di regolatori lineari dalle prestazioni molto migliorate e vi sono circuiti come il regolatore di John Linsley Hood che non possono non suscitare il più vivo interesse della comunità audiofila
Resumo:
The role of dendritic cells (DCs) in disease progression of primary cutaneous T-cell lymphoma (CTCL) is not well understood. With their unique ability to induce primary immune responses as well as immunotolerance, DCs play a critical role in mediation of anti-tumor immune responses. Tumor-infiltrating DCs have been determined to represent important prognostic factors in a variety of human tumors.
Resumo:
Transportation corridors in megaregions present a unique challenge for planners because of the high concentration of development, complex interjurisdictional issues, and history of independent development of core urban centers. The concept of resilience, as applied to megaregions, can be used to understand better the performance of these corridors. Resiliency is the ability to recover from or adjust easily to change. Resiliency performance measures can be expanded on for application to megaregions throughout the United States. When applied to transportation corridors in megaregions and represented by performance measures such as redundancy, continuity, connectivity, and travel time reliability, the concept of resiliency captures the spatial and temporal relationships between the attributes of a corridor, a network, and neighboring facilities over time at the regional and local levels. This paper focuses on the development of performance measurements for evaluating corridor resiliency as well as a plan for implementing analysis methods at the jurisdictional level. The transportation corridor between Boston, Massachusetts, and Washington, D.C., is used as a case study to represent the applicability of these measures to megaregions throughout the country.
Resumo:
Immature dendritic cells (DC) reside in tissues where they initiate immune responses by taking up foreign antigens. Since DC have a limited tissue half-life, the DC pool in tissues has to be replenished constantly. This implies that precursor/immature DC must be able to cross non-activated endothelium using as yet unknown mechanisms. Here we show that immature, but not mature bone marrow-derived murine DC migrate across resting endothelial monolayers in vitro. We find that endothelial intercellular adhesion molecule-2 (ICAM-2) is a major player in transendothelial migration (TEM) of immature DC, accounting for at least 41% of TEM. Surprisingly, the ICAM-2-mediated TEM was independent of beta2-integrins, the known ICAM-2 ligands, since neither blocking of beta2-integrins with antibodies nor the use of CD18-deficient DC affected the ICAM-2-specific TEM. In humans, the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) was shown to interact with ICAM-2, suggesting a similar role in mice. However, we find that none of the murine DC-SIGN homologues mDC-SIGN, murine DC-SIGN-related molecule-1 (mSIGN-R1) and mSIGN-R3 is expressed on the surface of bone marrow-derived mouse DC. Taken together, this study shows that ICAM-2 strongly supports transmigration of immature DC across resting endothelium by interacting with ligands that are distinct from beta2-integrins and DC-SIGN homologues.
Resumo:
Speech melody or prosody subserves linguistic, emotional, and pragmatic functions in speech communication. Prosodic perception is based on the decoding of acoustic cues with a predominant function of frequency-related information perceived as speaker's pitch. Evaluation of prosodic meaning is a cognitive function implemented in cortical and subcortical networks that generate continuously updated affective or linguistic speaker impressions. Various brain-imaging methods allow delineation of neural structures involved in prosody processing. In contrast to functional magnetic resonance imaging techniques, DC (direct current, slow) components of the EEG directly measure cortical activation without temporal delay. Activation patterns obtained with this method are highly task specific and intraindividually reproducible. Studies presented here investigated the topography of prosodic stimulus processing in dependence on acoustic stimulus structure and linguistic or affective task demands, respectively. Data obtained from measuring DC potentials demonstrated that the right hemisphere has a predominant role in processing emotions from the tone of voice, irrespective of emotional valence. However, right hemisphere involvement is modulated by diverse speech and language-related conditions that are associated with a left hemisphere participation in prosody processing. The degree of left hemisphere involvement depends on several factors such as (i) articulatory demands on the perceiver of prosody (possibly, also the poser), (ii) a relative left hemisphere specialization in processing temporal cues mediating prosodic meaning, and (iii) the propensity of prosody to act on the segment level in order to modulate word or sentence meaning. The specific role of top-down effects in terms of either linguistically or affectively oriented attention on lateralization of stimulus processing is not clear and requires further investigations.
Resumo:
Electrical Power Assisted Steering system (EPAS) will likely be used on future automotive power steering systems. The sinusoidal brushless DC (BLDC) motor has been identified as one of the most suitable actuators for the EPAS application. Motor characteristic variations, which can be indicated by variations of the motor parameters such as the coil resistance and the torque constant, directly impart inaccuracies in the control scheme based on the nominal values of parameters and thus the whole system performance suffers. The motor controller must address the time-varying motor characteristics problem and maintain the performance in its long service life. In this dissertation, four adaptive control algorithms for brushless DC (BLDC) motors are explored. The first algorithm engages a simplified inverse dq-coordinate dynamics controller and solves for the parameter errors with the q-axis current (iq) feedback from several past sampling steps. The controller parameter values are updated by slow integration of the parameter errors. Improvement such as dynamic approximation, speed approximation and Gram-Schmidt orthonormalization are discussed for better estimation performance. The second algorithm is proposed to use both the d-axis current (id) and the q-axis current (iq) feedback for parameter estimation since id always accompanies iq. Stochastic conditions for unbiased estimation are shown through Monte Carlo simulations. Study of the first two adaptive algorithms indicates that the parameter estimation performance can be achieved by using more history data. The Extended Kalman Filter (EKF), a representative recursive estimation algorithm, is then investigated for the BLDC motor application. Simulation results validated the superior estimation performance with the EKF. However, the computation complexity and stability may be barriers for practical implementation of the EKF. The fourth algorithm is a model reference adaptive control (MRAC) that utilizes the desired motor characteristics as a reference model. Its stability is guaranteed by Lyapunov’s direct method. Simulation shows superior performance in terms of the convergence speed and current tracking. These algorithms are compared in closed loop simulation with an EPAS model and a motor speed control application. The MRAC is identified as the most promising candidate controller because of its combination of superior performance and low computational complexity. A BLDC motor controller developed with the dq-coordinate model cannot be implemented without several supplemental functions such as the coordinate transformation and a DC-to-AC current encoding scheme. A quasi-physical BLDC motor model is developed to study the practical implementation issues of the dq-coordinate control strategy, such as the initialization and rotor angle transducer resolution. This model can also be beneficial during first stage development in automotive BLDC motor applications.
Resumo:
Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.
Resumo:
For a microgrid with a high penetration level of renewable energy, energy storage use becomes more integral to the system performance due to the stochastic nature of most renewable energy sources. This thesis examines the use of droop control of an energy storage source in dc microgrids in order to optimize a global cost function. The approach involves using a multidimensional surface to determine the optimal droop parameters based on load and state of charge. The optimal surface is determined using knowledge of the system architecture and can be implemented with fully decentralized source controllers. The optimal surface control of the system is presented. Derivations of a cost function along with the implementation of the optimal control are included. Results were verified using a hardware-in-the-loop system.
Resumo:
As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.