983 resultados para Cytokine-mediated Osteoclastogenesis
Resumo:
beta1,4-Galactosyltransferase V (beta1,4GalT V; EC 2.4.1.38) is considered to be very important in glioma for expressing transformation-related highly branched N-glycans. Recently, we have characterized beta1,4GalT V as a positive growth regulator in several glioma cell lines. However, the role of beta1,4GalT V in glioma therapy has not been clearly reported. In this study, interfering with the expression of beta1,4GalT V by its antisense cDNA in SHG44 human glioma cells markedly promoted apoptosis induced by etoposide and the activation of caspases as well as processing of Bid and expression of Bax and Bak. Conversely, the ectopic expression of beta1,4GalT V attenuated the apoptotic effect of etoposide on SHG44 cells. In addition, both the beta1,4GalT V transcription and the binding of total or membrane glycoprotein with Ricinus communis agglutinin-I (RCA-I) were partially reduced in etoposide-treated SHG44 cells, correlated well with a decreased level of Sp1 that has been identified as an activator of beta1,4GalT V transcription. Collectively, our results suggest that the down-regulation of beta1,4GalT V expression plays an important role in etoposide-induced apoptosis and could be mediated by a decreasing level of Sp1 in SHG44 cells, indicating that inhibitors of beta1,4GalT V may enhance the therapeutic efficiency of etoposide for malignant glioma.
Resumo:
Cyclin-dependent kinase 11 (CDK11; also named PITSLRE) is part of the large family of p34(cdc2)-related kinases whose functions appear to be linked with cell cycle progression, tumorigenesis, and apoptotic signaling. The mechanism that CDK11(p58) induces apoptosis is not clear. Some evidences suggested beta1,4-galactosyltransferase 1 (beta1,4-GT 1) might participate in apoptosis induced by CDK11(p58). In this study, we demonstrated that ectopically expressed beta1,4-GT 1 increased CDK11(p58)-mediated apoptosis induced by cycloheximide (CHX). In contrast, RNAi-mediated knockdown of beta1,4-GT 1 effectively inhibited apoptosis induced by CHX in CDK11(p58)-overexpressing cells. For example, the cell morphological and nuclear changes were reduced; the loss of cell viability was prevented and the number of cells in sub-G1 phase was decreased. Knock down of beta1,4-GT 1 also inhibited the release of cytochrome c from mitochondria and caspase-3 processing. Therefore, the cleavage of CDK11(p58) by caspase-3 was reduced. We proposed that beta1,4-GT 1 might contribute to the pro-apoptotic effect of CDK11(p58). This may represent a new mechanism of beta1,4-GT 1 in CHX-induced apoptosis of CDK11(p58)-overexpressing cells.
Resumo:
Photodynamic therapy of deep or nodular skin tumours is currently limited by the poor tissue penetration of the porphyrin precursor 5-aminolevulinic acid (ALA). In this study, silicon microneedle arrays were used, for the first time, to enhance skin penetration of ALA in vitro and in vivo. Puncturing excised murine skin with 6x7 arrays of microneedles 270 mum in height, with a diameter of 240 mum at the base and an interspacing of 750 mum led to a significant increase in transdermal delivery of ALA released from a bioadhesive patch containing 19 mg ALA cm(-2). Microneedle puncture enhanced ALA delivery to the upper regions of excised porcine skin but, at mean depths of 1.875 mm, ALA concentrations were similar to control values, possibly reflecting binding of ALA by tissue components. However, and importantly, in vivo experiments using nude mice showed that microneedle puncture could reduce application time and ALA dose required to induce high levels of the photosensitiser protoporphyrin IX in skin. This clearly has implications for clinical practice, as shorter application times would mean improved patient and clinician convenience and also that more patients could be treated in the same session. As ALA is expensive and degrades rapidly via a second order reaction, reducing the required dose is also a notable advantage.