998 resultados para Cystathionine beta-Synthase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-Arrestins regulate the functioning of G protein-coupled receptors in a variety of cellular processes including receptor-mediated endocytosis and activation of signaling molecules such as ERK. A key event in these processes is the G protein-coupled receptor-mediated recruitment of beta-arrestins to the plasma membrane. However, despite extensive knowledge in this field, it is still disputable whether activation of signaling pathways via beta-arrestin recruitment entails paired activation of receptor dimers. To address this question, we investigated the ability of different muscarinic receptor dimers to recruit beta-arrestin-1 using both co-immunoprecipitation and fluorescence microscopy in COS-7 cells. Experimentally, we first made use of a mutated muscarinic M(3) receptor, which is deleted in most of the third intracellular loop (M(3)-short). Although still capable of activating phospholipase C, this receptor loses almost completely the ability to recruit beta-arrestin-1 following carbachol stimulation in COS-7 cells. Subsequently, M(3)-short was co-expressed with the M(3) receptor. Under these conditions, the M(3)/M(3)-short heterodimer could not recruit beta-arrestin-1 to the plasma membrane, even though the control M(3)/M(3) homodimer could. We next tested the ability of chimeric adrenergic muscarinic alpha(2)/M(3) and M(3)/alpha(2) heterodimeric receptors to co-immunoprecipitate with beta-arrestin-1 following stimulation with adrenergic and muscarinic agonists. beta-Arrestin-1 co-immunoprecipitation could be induced only when carbachol or clonidine were given together and not when the two agonists were supplied separately. Finally, we tested the reciprocal influence that each receptor may exert on the M(2)/M(3) heterodimer to recruit beta-arrestin-1. Remarkably, we observed that M(2)/M(3) heterodimers recruit significantly greater amounts of beta-arrestin-1 than their respective M(3)/M(3) or M(2)/M(2) homodimers. Altogether, these findings provide strong evidence in favor of the view that binding of beta-arrestin-1 to muscarinic M(3) receptors requires paired stimulation of two receptor components within the same receptor dimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin secretion from pancreatic beta cells is stimulated by glucose metabolism. However, the relative importance of metabolizing glucose via mitochondrial oxidative phosphorylation versus glycolysis for insulin secretion remains unclear. von Hippel-Lindau (VHL) tumor suppressor protein, pVHL, negatively regulates hypoxia-inducible factor HIF1alpha, a transcription factor implicated in promoting a glycolytic form of metabolism. Here we report a central role for the pVHL-HIF1alpha pathway in the control of beta-cell glucose utilization, insulin secretion, and glucose homeostasis. Conditional inactivation of Vhlh in beta cells promoted a diversion of glucose away from mitochondria into lactate production, causing cells to produce high levels of glycolytically derived ATP and to secrete elevated levels of insulin at low glucose concentrations. Vhlh-deficient mice exhibited diminished glucose-stimulated changes in cytoplasmic Ca(2+) concentration, electrical activity, and insulin secretion, which culminate in impaired systemic glucose tolerance. Importantly, combined deletion of Vhlh and Hif1alpha rescued these phenotypes, implying that they are the result of HIF1alpha activation. Together, these results identify pVHL and HIF1alpha as key regulators of insulin secretion from pancreatic beta cells. They further suggest that changes in the metabolic strategy of glucose metabolism in beta cells have profound effects on whole-body glucose homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quinupristin-dalfopristin (Q-D) is an injectable streptogramin active against most gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). In experimental endocarditis, however, Q-D was less efficacious against MRSA isolates constitutively resistant to macrolide-lincosamide-streptogram B (C-MLS(B)) than against MLS(B)-susceptible isolates. To circumvent this problem, we used the checkerboard method to screen drug combinations that would increase the efficacy of Q-D against such bacteria. beta-Lactams consistently exhibited additive or synergistic activity with Q-D. Glycopeptides, quinolones, and aminoglycosides were indifferent. No drugs were antagonistic. The positive Q-D-beta-lactam interaction was independent of MLS(B) or beta-lactam resistance. Moreover, addition of Q-D at one-fourth the MIC to flucloxacillin-containing plates decreased the flucloxacillin MIC for MRSA from 500 to 1,000 mg/liter to 30 to 60 mg/liter. Yet, Q-D-beta-lactam combinations were not synergistic in bactericidal tests. Rats with aortic vegetations were infected with two C-MLS(B)-resistant MRSA isolates (isolates AW7 and P8) and were treated for 3 or 5 days with drug dosages simulating the following treatments in humans: (i) Q-D at 7 mg/kg two times a day (b.i.d.) (a relatively low dosage purposely used to help detect positive drug interactions), (ii) cefamandole at constant levels in serum of 30 mg/liter, (iii) cefepime at 2 g b.i.d., (iv) Q-D combined with either cefamandole or cefepime. Any of the drugs used alone resulted in treatment failure. In contrast, Q-D plus either cefamandole or cefepime significantly decreased valve infection compared to the levels of infection for both untreated controls and those that received monotherapy (P < 0.05). Importantly, Q-D prevented the growth of highly beta-lactam-resistant MRSA in vivo. The mechanism of this beneficial drug interaction is unknown. However, Q-D-beta-lactam combinations might be useful for the treatment of complicated infections caused by multiple organisms, including MRSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous investigations in experimental animals have shown that a new type of beta-adrenoceptor agonist (Ro 16-8714) possesses both thermogenic and antihyperglycemic properties. The aim of the study was to assess the thermogenic capacity of the compound in man after acute administration. Following an overnight fast three different doses (5, 10 and 20 mg) and a placebo were given per os to six normal-weight young men. The rate of energy expenditure (EE) and substrate utilization were determined by indirect calorimetry (hood system) before and for 6 h following the drug administration. Heart rate and blood pressure as well as plasma glucose, insulin and free fatty acid (FFA) concentrations were also measured at regular intervals throughout the study. The increment relative to base-line (mean +/- s.e.m.) in EE with placebo, 5, 10 and 20 mg was 4 +/- 3, 10 +/- 2, 11 +/- 2 and 21 +/- 2 percent respectively whereas heart rate was enhanced by 2 +/- 2, 8 +/- 3, 22 +/- 2, and 49 +/- 8 percent. Systolic blood pressure increased less (1 +/- 2, 8 +/- 1, 11 +/- 1 and 13 +/- 2 percent), and diastolic blood pressure did not change significantly. Simultaneously we observed a slight and transient increase in blood glucose, insulin and FFA concentrations. It is concluded that in lean individuals Ro 16-8714 is a potent thermogenic agent; however, new beta-adrenoceptor agonists should be developed in order to avoid the tachycardia associated with the thermogenic effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to verify in man the relationships of muscle glycogen synthase and phosphorylase activities with glycogen concentration that were reported in animal studies. The upper level of glycogen concentration in muscle is known to be tightly controlled, and glycogen concentration was reported to have an inhibitory effect on synthase activity and a stimulatory effect on phosphorylase activity. Glycogen synthase and phosphorylase activity and glycogen concentration were measured in muscle biopsies in a group of nine normal subjects after stimulating an increase of their muscle glycogen concentration through either an intravenous glucose-insulin infusion to stimulate glycogen synthesis, or an Intralipid (Vitrum, Stockholm, Sweden) infusion in the basal state to inhibit glycogen mobilization by favoring lipid oxidation at the expense of glucose oxidation. Phosphorylase activity increased from 71.3 +/- 21.0 to 152.8 +/- 20.0 nmol/min/mg protein (P < .005) after the glucose-insulin infusion. Phosphorylase activity was positively correlated with glycogen concentration (P = .005 and P = .0001) after the glucose-insulin and Intralipid infusions, respectively. Insulin-stimulated glycogen synthase activity was significantly negatively correlated with glycogen concentration at the end of the Intralipid infusion (P < .005). In conclusion, by demonstrating a negative correlation of glycogen concentration with glycogen synthase and a positive correlation with phosphorylase, this study might confirm in man the double-feedback mechanism by which changes in glycogen concentration regulate glycogen synthase and phosphorylase activities. It suggests that this mechanism might play an important role in the regulation of glucose storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth factors seem to be part of a complex cellular signalling language, in which individual growth factors are the equivalents of the letters that compose words. According to this analogy, informational content lies, not in an individual growth factor, but in the entire set of growth factors and others signals to which a cell is exposed. The ways in which growth factors exert their combinatorial effects are becoming clearer as the molecular mechanisms of growth factors actions are being investigated. A number of related extracellular signalling molecules that play widespread roles in regulating development in both invertebrates and vertebrates constitute the Fibroblast Growth Factor (FGF) and type beta Transforming Growth Factor ((TGF beta). The latest research literature about the role and fate of these Growth factors and their influence in the craniofacial bone growth ad development is reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth factors seem to be part of a complex cellular signalling language, in which individual growth factors are the equivalents of the letters that compose words. According to this analogy, informational content lies, not in an individual growth factor, but in the entire set of growth factors and others signals to which a cell is exposed. The ways in which growth factors exert their combinatorial effects are becoming clearer as the molecular mechanisms of growth factors actions are being investigated. A number of related extracellular signalling molecules that play widespread roles in regulating development in both invertebrates and vertebrates constitute the Fibroblast Growth Factor (FGF) and type beta Transforming Growth Factor ((TGF beta). The latest research literature about the role and fate of these Growth factors and their influence in the craniofacial bone growth ad development is reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ß,L-malic acid) (PMLA) was made to interact with the cationic anticancer drug Doxorubicin (DOX) in aqueous solution to form ionic complexes with different compositions and an efficiency near to 100%. The PMLA/DOX complexes were characterized by spectroscopy, thermal analysis, and scanning electron microscopy. According to their composition, the PMLA/DOX complexes spontaneously self-assembled into spherical micro or nanoparticles with negative surface charge. Hydrolytic degradation of PMLA/DOX complexes took place by cleavage of the main chain ester bond and simultaneous release of the drug. In vitro drug release studies revealed that DOX delivery from the complexes was favored by acidic pH and high ionic strength

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study new supergravity solutions related to large-N c N=1 supersymmetric gauge field theories with a large number N f of massive flavors. We use a recently proposed framework based on configurations with N c color D5 branes and a distribution of N f flavor D5 branes, governed by a function N f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of x ≡ N f /N c . In the IR region, the solution smoothly approaches the deformed Maldacena-Núñez solution. In the UV region it approaches a linear dilaton solution. For x < 2 the gauge coupling β g function computed holographically is negative definite, in the UV approaching the NSVZ β function with anomalous dimension γ 0 = −1/2 (approaching − 3/(32π 2)(2N c  − N f )g 3)), and with β g  → −∞ in the IR. For x = 2, β g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x > 2 describe a"Seiberg dual" picture where N f  − 2N c flips sign.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Kauran beetaglukaanin viskositeetti kauratuotteissa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background: Hypoxia-mediated HIF-1a stabilization and NF-kB activation play a key role in carcinogenesis by fostering cancer cell survival, angiogenesis and tumor invasion. Gangliosides are integral components of biological membranes with an increasingly recognized role as signaling intermediates. In particular, ganglioside GD3 has been characterized as a proapoptotic lipid effector by promoting cell death signaling and suppression of survival pathways. Thus, our aim was to analyze the role of GD3 in hypoxia susceptibility of hepatocarcinoma cells and in vivo tumor growth. Methodology/Principal Findings: We generated and characterized a human hepatocarcinoma cell line stably expressing GD3 synthase (Hep3B-GD3), which catalyzes the synthesis of GD3 from GM3. Despite increased GD3 levels (2-3 fold), no significant changes in cell morphology or growth were observed in Hep3B-GD3 cells compared to wild type Hep3B cells under normoxia. However, exposure of Hep3B-GD3 cells to hypoxia (2% O2) enhanced reactive oxygen species (ROS) generation, resulting in decreased cell survival, with similar findings observed in Hep3B cells exposed to increasing doses of exogenous GD3. In addition, hypoxia-induced c-Src phosphorylation at tyrosine residues, NF-kB activation and subsequent expression of Mn-SOD were observed in Hep3B cells but not in Hep3B-GD3 cells. Moreover, MnTBAP, an antioxidant with predominant SOD mimetic activity, reduced ROS generation, protecting Hep3B-GD3 cells from hypoxia-induced death. Finally, lower tumor growth, higher cell death and reduced Mn-SOD expression were observed in Hep3B-GD3 compared to Hep3B tumor xenografts. Conclusion: These findings underscore a role for GD3 in hypoxia susceptibility by disabling the c-Src/NF-kB survival pathway resulting in lower Mn-SOD expression, which may be of relevance in hepatocellular carcinoma therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Diabetes mellitus is a common metabolic disorder characterized by dysfunction of insulin-secreting pancreatic beta-cells. MicroRNAs are important regulators of beta-cell activities. These non-coding RNAs have recently been discovered to exert their effects not only inside the cell producing them but, upon exosome-mediated transfer, also in other recipient cells. This novel communication mode remains unexplored in pancreatic beta-cells. In the present study, the microRNA content of exosomes released by beta-cells in physiological and physiopathological conditions was analyzed and the biological impact of their transfer to recipient cells investigated. RESULTS: Exosomes were isolated from the culture media of MIN6B1 and INS-1 derived 832/13 beta-cell lines and from mice, rat or human islets. Global profiling revealed that the microRNAs released in MIN6B1 exosomes do not simply reflect the content of the cells of origin. Indeed, while a subset of microRNAs was preferentially released in exosomes others were selectively retained in the cells. Moreover, exposure of MIN6B1 cells to inflammatory cytokines changed the release of several microRNAs. The dynamics of microRNA secretion and their potential transfer to recipient cells were next investigated. As a proof-of-concept, we demonstrate that if cel-miR-238, a C. Elegans microRNA not present in mammalian cells, is expressed in MIN6B1 cells a fraction of it is released in exosomes and is transferred to recipient beta-cells. Furthermore, incubation of untreated MIN6B1 or mice islet cells in the presence of microRNA-containing exosomes isolated from the culture media of cytokine-treated MIN6B1 cells triggers apoptosis of recipient cells. In contrast, exosomes originating from cells not exposed to cytokines have no impact on cell survival. Apoptosis induced by exosomes produced by cytokine-treated cells was prevented by down-regulation of the microRNA-mediating silencing protein Ago2 in recipient cells, suggesting that the effect is mediated by the non-coding RNAs. CONCLUSIONS: Taken together, our results suggest that beta-cells secrete microRNAs that can be transferred to neighboring beta-cells. Exposure of donor cells to pathophysiological conditions commonly associated with diabetes modifies the release of microRNAs and affects survival of recipient beta-cells. Our results support the concept that exosomal microRNAs transfer constitutes a novel cell-to-cell communication mechanism regulating the activity of pancreatic beta-cells.