879 resultados para Cryotherapy, joint position sense, proprioception, pre-cooling, knee injury
Resumo:
The aim of this study was to determine if athletes with a history of hamstring strain injury display lower levels of surface EMG (sEMG) activity and median power frequency in the previously injured hamstring muscle during maximal voluntary contractions. Recreational athletes were recruited, 13 with a history of unilateral hamstring strain injury and 15 without prior injury. All athletes undertook isokinetic dynamometry testing of the knee flexors and sEMG assessment of the biceps femoris long head (BF) and medial hamstrings (MH) during concentric and eccentric contractions at ± 180 and ± 600.s-1. The knee flexors on the previously injured limb were weaker at all contraction speeds compared to the uninjured limb (+1800.s-1 p = 0.0036; +600.s-1 p = 0.0013; -600.s-1 p = 0.0007; -1800.s-1 p = 0.0007) whilst sEMG activity was only lower in the BF during eccentric contractions (-600.s-1 p = 0.0025; -1800.s-1 p = 0.0003). There were no between limb differences in MH sEMG activity or median power frequency from either BF or MH in the injured group. The uninjured group showed no between limb differences in any of the tested variables. Secondary analysis comparing the between limb difference in the injured and the uninjured groups, confirmed that previously injured hamstrings were mostly weaker (+1800.s-1 p = 0.2208; +600.s-1 p = 0.0379; -600.s-1 p = 0.0312; -1800.s-1 p = 0.0110) and that deficits in sEMG were confined to the BF during eccentric contractions (-600.s-1 p = 0.0542; -1800.s-1 p = 0.0473) Previously injured hamstrings were weaker and BF sEMG activity was lower than the contralateral uninjured hamstring. This has implications for hamstring strain injury prevention and rehabilitation which should consider altered neural function following hamstring strain injury.
Resumo:
Hamstring strain injuries are amongst the most common and problematic injuries in a wide range of sports that involve high speed running. The comparatively high rate of hamstring injury recurrence is arguably the most concerning aspect of these injuries. A number of modifiable and nonmodifiable risk factors are proposed to predispose athletes to hamstring strains. Potentially, the persistence of risk factors and the development of maladaptations following injury may explain injury recurrence. Here, the role of neuromuscular inhibition following injury is discussed as a potential mechanism for several maladaptations associated with hamstring re-injury. These maladaptations include eccentric hamstring weakness, selective hamstring atrophy and shifts in the knee flexor torque-joint angle relationship. Current evidence indicates that athletes return to competition after hamstring injury having developed maladaptations that predispose them to further injury. When rehabilitating athletes to return to competition following hamstring strain injury, the role of neuromuscular inhibition in re-injury should be considered.
Resumo:
INTRODUCTION: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. AIM: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed no change following intermittent running. CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.
Resumo:
Introduction: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is sometimes greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. The purpose of this research was to determine whether declines in knee flexor strength following overground repeat sprints are caused by declines in voluntary activation of the hamstring muscles. Methods: Seventeen recreationally active males completed 3 sets of 6 by 20m overground sprints. Maximal isokinetic concentric and eccentric knee flexor and concentric knee extensor strength was determined at ±1800.s-1 and ±600.s-1 while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. Results: Overground repeat sprint running resulted in a significant decline in eccentric knee flexor strength (31.1 Nm; 95% CI = 21.8 to 40.3 Nm; p < 0.001). However, concentric knee flexor strength was not significantly altered (11.1 Nm; 95% CI= -2.8 to 24.9; p=0.2294). Biceps femoris voluntary activation levels displayed a significant decline eccentrically (0.067; 95% CI=0.002 to 0.063; p=0.0325). However, there was no significant decline concentrically (0.025; 95% CI=-0.018 to 0.043; p=0.4243) following sprinting. Furthermore, declines in average peak torque at -1800.s-1 could be explained by changes in hamstring activation (R2 = 0.70). Moreover, it was change in the lateral hamstring muscle activity that was related to the decrease in knee flexor torque (p = 0.0144). In comparison, medial hamstring voluntary activation showed no change for either eccentric (0.06; 95% CI = -0.033 to 0.102; p=0.298) or concentric (0.09; 95% CI = -0.03 to 0.16; p=0.298) muscle actions following repeat sprinting. Discussion: Eccentric hamstring strength is decreased significantly following overground repeat sprinting. Voluntary activation deficits in the biceps femoris muscle explain a large portion of this weakness. The implications of these findings are significant as the biceps femoris muscle is the most frequently strained of the knee flexors and fatigue is implicated in the aetiology of this injury.
Resumo:
Background: Hamstring strain injuries (HSI) are prevalent in sport and re-injury rates have been high for many years. Maladaptation following HSI are implicated in injury recurrence however nervous system function following HSI has received little attention. Aim: To determine if recreational athletes with a history of unilateral HSI, who have returned to training and competition, will exhibit lower levels of voluntary activation (VA) and median power frequency (MPF) in the previously injured limb compared to the uninjured limb at long muscle lengths. Methods: Twenty-eight recreational athletes were recruited. Of these, 13 athletes had a history of unilateral HSI and 15 had no history of HSI. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during concentric and eccentric contractions at ± 180 and ± 60deg/s. Results: The previously injured limb was weaker at all contraction speeds compared to the uninjured limb (+180deg/s mean difference(MD) = 9.3Nm, p = 0.0036; +60deg/s MD = 14.0Nm, p = 0.0013; -60deg/s MD = 18.3Nm, p = 0.0007; -180deg/s MD = 20.5Nm, p = 0.0007) whilst VA was only lower in the biceps femoris long head during eccentric contractions (-60deg/s MD = 0.13, p = 0.0025; -180deg/s MD = 0.13, p = 0.0003). There were no between limb differences in medial hamstring VA or MPF from either biceps femoris long head or medial hamstrings in the injured group. The uninjured group showed no between limb differences with any of the tested variables. Conclusion: Previously injured hamstrings were weaker than the contralateral uninjured hamstring at all tested speeds and contraction modes. During eccentric contractions biceps femoris long head VA was lower in the previously injured limb suggesting neural control of biceps femoris long head may be altered following HSI. Current rehabilitation practices have been unsuccessful in restoring strength and VA following HSI. Restoration of these markers should be considered when determining the success of rehabilitation from HSI. Further investigations are required to elucidate the full impact of lower levels of biceps femoris long head VA following HSI on rehabilitation outcomes and re-injury risk.
Resumo:
The purpose of this study was to investigate if obese children have reduced knee extensor (KE) strength and to explore the relationship between adiposity and KE strength. An observational case-control study was conducted in three Australian states, recruiting obese [n=107 (51 female, 56 male)] and healthy-weight [n=132 (56 female, 76 male)] 10–13 year old children. Body mass index, body composition (dual energy X-ray absorptiometry), isokinetic/isometric peak KE torques (dynamometry) and physical activity (accelerometry) were assessed. Results revealed that compared with their healthy-weight peers, obese children had higher absolute KE torques (P≤0.005), equivocal KE torques when allometrically normalized for fat-free mass (FFM) (P≥0.448) but lower relative KE torques when allometrically normalized for body mass (P≤0.008). Adjustments for maternal education, income and accelerometry had little impact on group differences, except for isometric KE torques relative to body mass which were no longer significantly lower in obese children (P≥0.013, not significant after controlling for multiple comparisons). Percent body fat was inversely related to KE torques relative to body mass (r= -0.22 to -0.35, P≤0.002), irrespective of maternal education, income or accelerometry. In conclusion, while obese children have higher absolute KE strength and FFM, they have less functional KE strength (relative to mass) available for weight-bearing activities than healthy-weight children. The finding that FFM-normalized KE torques did not differ suggests that the intrinsic contractile properties of the KE muscles are unaffected by obesity. Future research is needed to see if deficits in KE strength relative to mass translate into functional limitations in weight-bearing activities.
Resumo:
Background--Pulmonary diffusing capacity for carbon monoxide (Dlco), alveolar capillary membrane diffusing capacity (Dm), and pulmonary capillary blood volume (Vc) are all significantly reduced after exercise. Objective--To investigate whether measurement position affects this impaired gas transfer. Methods--Before and one, two, and four hours after incremental cycle ergometer exercise to fatigue, single breath Dlco, Dm, and Vc measurements were obtained in 10 healthy men in a randomly assigned supine and upright seated position. Results--After exercise, Dlco, Dm, and Vc were significantly depressed compared with baseline in both positions. The supine position produced significantly higher values over time for Dlco (5.22 (0.13) v 4.66 (0.15) ml/min/mm Hg/l, p = 0.022) and Dm (6.78 (0.19) v 6.03 (0.19) ml/min/mm Hg/l, p = 0.016), but there was no significant position effect for Vc. There was a similar pattern of change over time for Dlco, Dm, and Vc in the two positions. Conclusions--The change in Dlco after exercise appears to be primarily due to a decrease in Vc. Although the mechanism for the reduction in Vc cannot be determined from these data, passive relocation of blood to the periphery as the result of gravity can be discounted, suggesting that active vasoconstriction of the pulmonary vasculature and/or peripheral vasodilatation is occurring after exercise.
Resumo:
Background Cervical cancer and infection with human immunodeficiency virus (HIV) are both important public health problems in South Africa (SA). The aim of this study was to determine the prevalence of cervical squamous intraepithelial lesions (SILs), high-risk human papillomavirus (HR-HPV), HPV viral load and HPV genotypes in HIV positive women initiating anti-retroviral (ARV) therapy. Methods A cross-sectional survey was conducted at an anti-retroviral (ARV) treatment clinic in Cape Town, SA in 2007. Cervical specimens were taken for cytological analysis and HPV testing. The Digene Hybrid Capture 2 (HC2) test was used to detect HR-HPV. Relative light units (RLU) were used as a measure of HPV viral load. HPV types were determined using the Roche Linear Array HPV Genotyping test. Crude associations with abnormal cytology were tested and multiple logistic regression was used to determine independent risk factors for abnormal cytology. Results The median age of the 109 participants was 31 years, the median CD4 count was 125/mm3, 66.3% had an abnormal Pap smear, the HR-HPV prevalence was 78.9% (Digene), the median HPV viral load was 181.1 RLU (HC2 positive samples only) and 78.4% had multiple genotypes. Among women with abnormal smears the most prevalent HR-HPV types were HPV types 16, 58 and 51, all with a prevalence of 28.5%. On univariate analysis HR-HPV, multiple HPV types and HPV viral load were significantly associated with the presence of low and high-grade SILs (LSIL/HSIL). The multivariate logistic regression showed that HPV viral load was associated with an increased odds of LSIL/HSIL, odds ratio of 10.7 (95% CI 2.0 – 57.7) for those that were HC2 positive and had a viral load of ≤ 181.1 RLU (the median HPV viral load), and 33.8 (95% CI 6.4 – 178.9) for those that were HC2 positive with a HPV viral load > 181.1 RLU. Conclusion Women initiating ARVs have a high prevalence of abnormal Pap smears and HR-HPV. Our results underscore the need for locally relevant, rigorous screening protocols for the increasing numbers of women accessing ARV therapy so that the benefits of ARVs are not partially offset by an excess risk in cervical cancer.
Resumo:
Introduction: Food insecurity is a social determinant of health and is defined as limited ability to access sufficient amounts of nutritionally adequate or safe food for a healthy and active life. Food insecurity is associated with poor health status and the exacerbation of other health inequalities. This study examined whether an association existed between 1) socioeconomic position (SEP) and food insecurity and 2) food insecurity and weight status. Methods: Data from the 1995 National Nutrition Survey was analysed. A random sample of households (n = 13 858) were asked about dietary habits and food choices. Information about gender, age, BMI, waist circumference, household income and whether the household had run out of money to purchase food in the previous 12 months was obtained and analysed using chi-square and logistic regression. Results: Income was significantly associated with food insecurity; households with lower income were at higher risk of food insecurity. Lower income males were nine times more likely to experience food insecurity and lower income females were three times more likely to experience food insecurity than their higher income counterparts. Food insecurity was significantly associated with body mass index (BMI) among women but not men. Women experiencing food insecurity were at higher risk of overweight/obesity according to BMI and waist circumference measures. Conclusion: Evidence suggests that low income households are at higher risk of food insecurity and women who are food insecure are at higher risk of being overweight or obese. Food insecurity may mediate the association between SEP and BMI.
Resumo:
Pretretament is an essential and expensive processing step for the manufacturing of ethanol from lignocellulosic raw materials. Ionic liquids are a new class of solvents that have the potential to be used as pretreatment agents. The attractive characteristics of ionic liquid pretreatment of lignocellulosics such as thermal stability, dissolution properties, fractionation potential, cellulose decrystallisation capacity and saccharification impact are investigated in this thesis. Dissolution of bagasse with 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) at high temperatures (110 �‹C to 160 �‹C) is investigated as a pretreatment process. Material balances are reported and used along with enzymatic saccharification data to identify optimum pretreatment conditions (150 �‹C for 90 min). At these conditions, the dissolved and reprecipitated material is enriched in cellulose, has a low crystallinity and the cellulose component is efficiently hydrolysed (93 %, 3 h, 15 FPU). At pretreatment temperatures < 150 �‹C, the undissolved material has only slightly lower crystallinity than the starting. At pretreatment temperatures . 150 �‹C, the undissolved material has low crystallinity and when combined with the dissolved material has a saccharification rate and extent similar to completely dissolved material (100 %, 3h, 15 FPU). Complete dissolution is not necessary to maximize saccharification efficiency at temperatures . 150 �‹C. Fermentation of [C4mim]Cl-pretreated, enzyme-saccharified bagasse to ethanol is successfully conducted (85 % molar glucose-to-ethanol conversion efficiency). As compared to standard dilute acid pretreatment, the optimised [C4mim]Cl pretreatment achieves substantially higher ethanol yields (79 % cf. 52 %) in less than half the processing time (pretreatment, saccharification, fermentation). Fractionation of bagasse partially dissolved in [C4mim]Cl to a polysaccharide rich and a lignin rich fraction is attempted using aqueous biphasic systems (ABSs) and single phase systems with preferential precipitation. ABSs of ILs and concentrated aqueous inorganic salt solutions are achievable (e.g. [C4mim]Cl with 200 g L-1 NaOH), albeit they exhibit a number of technical problems including phase convergence (which increases with increasing biomass loading) and deprotonation of imidazolium ILs (5 % - 8 % mol). Single phase fractionation systems comprising lignin solvents / cellulose antisolvents, viz. NaOH (2M) and acetone in water (1:1, volume basis), afford solids with, respectively, 40 % mass and 29 % mass less lignin than water precipitated solids. However, this delignification imparts little increase in saccharification rates and extents of these solids. An alternative single phase fractionation system is achieved simply by using water as an antisolvent. Regulating the water : IL ratio results in a solution that precipitates cellulose and maintains lignin in solution (0.5 water : IL mass ratio) in both [C4mim]Cl and 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc)). This water based fractionation is applied in three IL pretreatments on bagasse ([C4mim]Cl, 1-ethyl-3-methyl imidazolium chloride ([C2mim]Cl) and [C2mim]OAc). Lignin removal of 10 %, 50 % and 60 % mass respectively is achieved although only 0.3 %, 1.5 % and 11.7 % is recoverable even after ample water addition (3.5 water : IL mass ratio) and acidification (pH . 1). In addition the recovered lignin fraction contains 70 % mass hemicelluloses. The delignified, cellulose-rich bagasse recovered from these three ILs is exposed to enzyme saccharification. The saccharification (24 h, 15 FPU) of the cellulose mass in starting bagasse, achieved by these pretreatments rank as: [C2mim]OAc (83 %)>>[C2mim]Cl (53 %)=[C4mim]Cl(53%). Mass balance determinations accounted for 97 % of starting bagasse mass for the [C4mim]Cl pretreatment , 81 % for [C2mim]Cl and 79 %for [C2mim]OAc. For all three IL treatments, the remaining bagasse mass (not accounted for by mass balance determinations) is mainly (more than half) lignin that is not recoverable from the liquid fraction. After pretreatment, 100 % mass of both ions of all three ILs were recovered in the liquid fraction. Compositional characteristics of [C2mim]OAc treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are opposite to those of chloride IL treated solids. The former biomass characteristics resemble those imparted by aqueous alkali pretreatment while the latter resemble those of aqueous acid pretreatments. The 100 % mass recovery of cellulose in [C2mim]OAc as opposed to 53 % mass recovery in [C2mim]Cl further demonstrates this since the cellulose glycosidic bonds are protected under alkali conditions. The alkyl chain length decrease in the imidazolium cation of these ILs imparts higher rates of dissolution and losses, and increases the severity of the treatment without changing the chemistry involved.
Resumo:
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Resumo:
Objectives: The current study investigated the change in neuromuscular contractile properties following competitive rugby league matches and the relationship with physical match demands. Design: Eleven trained, male rugby league players participated in 2–3 amateur, competitive matches (n = 30). Methods: Prior to, immediately (within 15-min) and 2 h post-match, players performed repeated counter-movement jumps (CMJ) followed by isometric tests on the right knee extensors for maximal voluntary contraction (MVC), voluntary activation (VA) and evoked twitch contractile properties of peak twitch force (Pt), rate of torque development (RTD), contraction duration (CD) and relaxation rate (RR). During each match, players wore 1 Hz Global Positioning Satellite devices to record distance and speeds of matches. Further, matches were filmed and underwent notational analysis for number of total body collisions. Results: Total, high-intensity, very-high intensity distances covered and mean speed were 5585 ± 1078 m, 661 ± 265, 216 ± 121 m and 75 ± 14 m min−1, respectively. MVC was significantly reduced immediately and 2 h post-match by 8 ± 11 and 12 ± 13% from pre-match (p < 0.05). Moreover, twitch contractile properties indicated a suppression of Pt, RTD and RR immediately post-match (p < 0.05). However, VA was not significantly altered from pre-match (90 ± 9%), immediately-post (89 ± 9%) or 2 h post (89 ± 8%), (p > 0.05). Correlation analyses indicated that total playing time (r = −0.50) and mean speed (r = −0.40) were moderately associated to the change in post-match MVC, while mean speed (r = 0.35) was moderately associated to VA. Conclusions: The present study highlights the physical demands of competitive amateur rugby league result in interruption of peripheral contractile function, and post-match voluntary torque suppression may be associated with match playing time and mean speeds.
Resumo:
This investigation examined physiological and performance effects of cooling on recovery of medium-fast bowlers in the heat. Eight, medium-fast bowlers completed two randomised trials, involving two sessions completed on consecutive days (Session 1: 10-overs and Session 2: 4-overs) in 31 ± 3°C and 55 ± 17% relative humidity. Recovery interventions were administered for 20 min (mixed-method cooling vs. control) after Session 1. Measures included bowling performance (ball speed, accuracy, run-up speeds), physical demands (global positioning system, counter-movement jump), physiological (heart rate, core temperature, skin temperature, sweat loss), biochemical (creatine kinase, C-reactive protein) and perceptual variables (perceived exertion, thermal sensation, muscle soreness). Mean ball speed was higher after cooling in Session 2 (118.9 ± 8.1 vs. 115.5 ± 8.6 km · h−1; P = 0.001; d = 0.67), reducing declines in ball speed between sessions (0.24 vs. −3.18 km · h−1; P = 0.03; d = 1.80). Large effects indicated higher accuracy in Session 2 after cooling (46.0 ± 11.2 vs. 39.4 ± 8.6 arbitrary units [AU]; P = 0.13; d = 0.93) without affecting total run-up speed (19.0 ± 3.1 vs. 19.0 ± 2.5 km · h−1; P = 0.97; d = 0.01). Cooling reduced core temperature, skin temperature and thermal sensation throughout the intervention (P = 0.001–0.05; d = 1.31–5.78) and attenuated creatine kinase (P = 0.04; d = 0.56) and muscle soreness at 24-h (P = 0.03; d = 2.05). Accordingly, mixed-method cooling can reduce thermal strain after a 10-over spell and improve markers of muscular damage and discomfort alongside maintained medium-fast bowling performance on consecutive days in hot conditions.