1000 resultados para Craniometric measurements
Resumo:
OpenPMU is an open platform for the development of phasor measurement unit (PMU) technology. A need has been identified for an open-source alternative to commercial PMU devices tailored to the needs of the university researcher and for enabling the development of new synchrophasor instruments from this foundation. OpenPMU achieves this through open-source hardware design specifications and software source code, allowing duplicates of the OpenPMU to be fabricated under open-source licenses. This paper presents the OpenPMU device based on the Labview development environment. The device is performance tested according to the IEEE C37.118.1 standard. Compatibility with the IEEE C37.118.2 messaging format is achieved through middleware which is readily adaptable to other PMU projects or applications. Improvements have been made to the original design to increase its flexibility. A new modularized architecture for the OpenPMU is presented using an open messaging format which the authors propose is adopted as a platform for PMU research.
Resumo:
This paper analyzes data captured by a phasor measurement unit at a wind farm, employing two-speed induction generators, and investigates aspects of the control system's interaction with the power system. Composite superimposed transient events are proposed as a method to improve the quality of the analysis and reduce errors caused by unknowns, such as wind speed variation. A Mathworks SimPowerSystems model validates the inertia contribution of the wind farm, which is an important parameter in power systems with high wind penetration. Transients caused by turbine speed transitions are identified and explained. The analysis also highlights areas where wind farm control should be improved if useful inertia contribution is to be provided.
Resumo:
To measure anthropometric variables of weight, height, body mass index (BMI) and triceps skin fold thickness (TSF) and produce local percentiles for > 90 y old subjects. To assess prevalence of conventional measures of under nutrition (BMI at or below 18.5 kg/m2) or over nutrition (BMI values > 30 kg/m2) in this age group.
Resumo:
Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, ∼600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements. © 2010 American Institute of Physics.
Resumo:
Data obtained with any research tool must be reproducible, a concept referred to as reliability. Three techniques are often used to evaluate reliability of tools using continuous data in aging research: intraclass correlation coefficients (ICC), Pearson correlations, and paired t tests. These are often construed as equivalent when applied to reliability. This is not correct, and may lead researchers to select instruments based on statistics that may not reflect actual reliability. The purpose of this paper is to compare the reliability estimates produced by these three techniques and determine the preferable technique. A hypothetical dataset was produced to evaluate the reliability estimates obtained with ICC, Pearson correlations, and paired t tests in three different situations. For each situation two sets of 20 observations were created to simulate an intrarater or inter-rater paradigm, based on 20 participants with two observations per participant. Situations were designed to demonstrate good agreement, systematic bias, or substantial random measurement error. In the situation demonstrating good agreement, all three techniques supported the conclusion that the data were reliable. In the situation demonstrating systematic bias, the ICC and t test suggested the data were not reliable, whereas the Pearson correlation suggested high reliability despite the systematic discrepancy. In the situation representing substantial random measurement error where low reliability was expected, the ICC and Pearson coefficient accurately illustrated this. The t test suggested the data were reliable. The ICC is the preferred technique to measure reliability. Although there are some limitations associated with the use of this technique, they can be overcome.
Resumo:
Dynamic switching spectroscopy piezoresponse force microscopy is developed to separate thermodynamic and kinetic effects in local bias-induced phase transitions. The approaches for visualization and analysis of five-dimensional data are discussed. The spatial and voltage variability of relaxation behavior of the a-c domain lead zirconate-titanate surface suggest the interpretation in terms of surface charge dynamics. This approach is applicable to local studies of dynamic behavior in any system with reversible bias-induced phase transitions ranging from ferroelectrics and multiferroics to ionic systems such as batteries, fuel cells, and electroresistive materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590919]
Resumo:
Aim - To evaluate the reproducibility of the background fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope. Methods - 10 normal volunteers and 10 patients with retinal disease were included in the study. One eye per subject was chosen randomly. Five images of the same eye of each individual were obtained, after pupillary dilatation, by two investigators using a confocal scanning laser ophthalmoscope. Background fundus autofluorescence was measured at 7 degrees temporal to the fovea in normal volunteers and between 7 and 15 degrees temporal to the fovea in patients. Within session reproducibility of the measurements obtained by each investigator and interobserver reproducibility were evaluated. Results - For investigator 1 the median values of fundus autofluorescence obtained were 31.9 units for normal volunteers and 27.3 units for patients. The median largest difference in readings in normal volunteers was 5.7 units (range 1.4-13.5 units) and in patients 4.2 units (1.5-15.1 units). For investigator 2 the median values of fundus autofluorescence obtained were 28.9 units for normal volunteers and 27.4 units for patients. The median largest difference in readings in normal volunteers was 3.6 units (2.7-11.7 units), and in patients 4.1 units (1.5-9.3 units). The median interobserver difference in readings in normal volunteers was 3.3 units and for patients 6.6 units. The median greatest interobserver difference in measurements obtained for normal volunteers was 8.8 units (8.4-23.0 units) and for patients 11.1 units (7.1-40.8 units). Conclusion - Within session reproducibility of the measurements of background fundus autofluorescence was satisfactory. Although interobserver reproducibility was moderate, the variability of the measurements of fundus autofluorescence between observers appears to be small when compared with variation in fundus autofluorescence with age and disease.