946 resultados para Crack Formation in Soils
Resumo:
Deadenylation is the major step triggering mammalian mRNA decay. One consequence of deadenylation is the formation of nontranslatable messenger RNA (mRNA) protein complexes (messenger ribonucleoproteins [mRNPs]). Nontranslatable mRNPs may accumulate in P-bodies, which contain factors involved in translation repression, decapping, and 5'-to-3' degradation. We demonstrate that deadenylation is required for mammalian P-body formation and mRNA decay. We identify Pan2, Pan3, and Caf1 deadenylases as new P-body components and show that Pan3 helps recruit Pan2, Ccr4, and Caf1 to P-bodies. Pan3 knockdown causes a reduction of P-bodies and has differential effects on mRNA decay. Knocking down Caf1 or overexpressing a Caf1 catalytically inactive mutant impairs deadenylation and mRNA decay. P-bodies are not detected when deadenylation is blocked and are restored when the blockage is released. When deadenylation is impaired, P-body formation is not restorable, even when mRNAs exit the translating pool. These results support a dynamic interplay among deadenylation, mRNP remodeling, and P-body formation in selective decay of mammalian mRNA.
Resumo:
Resting endothelial cells express the small proteoglycan biglycan, whereas sprouting endothelial cells also synthesize decorin, a related proteoglycan. Here we show that decorin is expressed in endothelial cells in human granulomatous tissue. For in vitro investigations, the human endothelium-derived cell line, EA.hy 926, was cultured for 6 or more days in the presence of 1% fetal calf serum on top of or within floating collagen lattices which were also populated by a small number of rat fibroblasts. Endothelial cells aligned in cord-like structures and developed cavities that were surrounded by human decorin. About 14% and 20% of endothelial cells became apoptotic after 6 and 12 days of co-culture, respectively. In the absence of fibroblasts, however, the extent of apoptosis was about 60% after 12 days, and cord-like structures were not formed nor could decorin production be induced. This was also the case when lattices populated by EA.hy 926 cells were maintained under one of the following conditions: 1) 10% fetal calf serum; 2) fibroblast-conditioned media; 3) exogenous decorin; or 4) treatment with individual growth factors known to be involved in angiogenesis. The mechanism(s) by which fibroblasts induce an angiogenic phenotype in EA.hy 926 cells is (are) not known, but a causal relationship between decorin expression and endothelial cell phenotype was suggested by transducing human decorin cDNA into EA.hy 926 cells using a replication-deficient adenovirus. When the transduced cells were cultured in collagen lattices, there was no requirement of fibroblasts for the formation of capillary-like structures and apoptosis was reduced. Thus, decorin expression seems to be of special importance for the survival of EA.hy 926 cells as well as for cord and tube formation in this angiogenesis model.
Resumo:
The oxygen isotopic composition of precipitation (δ18Oprec) is well known to be a valuable (paleo-)climate proxy. Paleosols and sediments and hemicelluloses therein have the potential to serve as archives recording the isotopic composition of paleoprecipitation. In a companion paper (Zech et al., 2014) we investigated δ18Ohemicellulose values of plants grown under different climatic conditions in a climate chamber experiment. Here we present results of compound-specific δ18O analyses of arabinose, fucose and xylose extracted from modern topsoils (n = 56) along a large humid-arid climate transect in Argentina in order to answer the question whether hemicellulose biomarkers in soils reflect δ18Oprec. The results from the field replications indicate that the homogeneity of topsoils with regard to δ18Ohemicellulose is very high for most of the 20 sampling sites. Standard deviations for the field replications are 1.5‰, 2.2‰ and 1.7‰, for arabinose, fucose and xylose, respectively. Furthermore, all three hemicellulose biomarkers reveal systematic and similar trends along the climate gradient. However, the δ18Ohemicellulose values (mean of the three sugars) do not correlate positively with δ18Oprec (r = −0.54, p < 0.014, n = 20). By using a Péclet-modified Craig-Gordon (PMCG) model it can be shown that the δ18Ohemicellulose values correlate highly significantly with modeled δ18Oleaf water values (r = 0.81, p < 0.001, n = 20). This finding suggests that hemicellulose biomarkers in (paleo-)soils do not simply reflect δ18Oprec but rather δ18Oprec altered by evaporative 18O enrichment of leaf water due to evapotranspiration. According to the modeling results, evaporative 18O enrichment of leaf water is relatively low (∼10‰) in the humid northern part of the Argentinian transect and much higher (up to 19‰) in the arid middle and southern part of the transect. Model sensitivity tests corroborate that changes in relative air humidity exert a dominant control on evaporative 18O enrichment of leaf water and thus δ18Ohemicellulose, whereas the effect of temperature changes is of minor importance. While oxygen exchange and degradation effects seem to be negligible, further factors needing consideration when interpreting δ18Ohemicellulose values obtained from (paleo-)soils are evaporative 18O enrichment of soil water, seasonality effects, wind effects and in case of abundant stem/root-derived organic matter input a partial loss of the evaporative 18O enrichment of leaf water. Overall, our results prove that compound-specific δ18O analyses of hemicellulose biomarkers in soils and sediments are a promising tool for paleoclimate research. However, disentangling the two major factors influencing δ18Ohemicellulose, namely δ18Oprec and relative air humidity controlled evaporative 18O enrichment of leaf water, is challenging based on δ18O analyses alone.
Resumo:
16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA:rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C:N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.
Resumo:
VirB6 from Agrobacterium tumefaciens is an essential component of the type IV secretion machinery for T pilus formation and genetic transformation of plants. Due to its predicted topology as a polytopic inner membrane protein, it was proposed to form the transport pore for cell-to-cell transfer of genetic material and proteinaceous virulence factors. Here, we show that the absence of VirB6 leads to reduced cellular levels of VirB5 and VirB3, which were proposed to assist T pilus formation as minor component(s) or assembly factor(s), respectively. Overexpression of virB6 in trans restored levels of cell-bound and T pilus-associated VirB5 to wild type but did not restore VirB3 levels. Thus, VirB6 has a stabilizing effect on VirB5 accumulation, thereby regulating T pilus assembly. In the absence of VirB6, cell-bound VirB7 monomers and VirB7-VirB9 heterodimers were reduced and VirB7 homodimer formation was abolished. This effect could not be restored by expression of VirB6 in trans. Expression of TraD, a component of the transfer machinery of the IncN plasmid pKM101, with significant sequence similarity to VirB6, restored neither protein levels nor bacterial virulence but partly permitted T pilus formation in a virB6 deletion strain. VirB6 may therefore regulate T pilus formation by direct interaction with VirB5, and wild-type levels of VirB3 and VirB7 homodimers are not required.
Resumo:
The occurrence of contemporary ecotype formation through adaptive divergence of populations within the range of an invasive species typically requires standing genetic variation but can be facilitated by phenotypic plasticity. The relative contributions of both of these to adaptive trait differentiation have rarely been simultaneously quantified in recently diverging vertebrate populations. Here we study a case of intraspecific divergence into distinct lake and stream ecotypes of threespine stickleback that evolved in the past 140 years within the invasive range in Switzerland. Using a controlled laboratory experiment with full-sib crosses and treatments mimicking a key feature of ecotypic niche divergence, we test if the phenotypic divergence that we observe in the wild results from phenotypic plasticity or divergent genetic predisposition. Our experimental groups show qualitatively similar phenotypic divergence as those observed among wild adults. The relative contribution of plasticity and divergent genetic predisposition differs among the traits studied, with traits related to the biomechanics of feeding showing a stronger genetic predisposition, whereas traits related to locomotion are mainly plastic. These results implicate that phenotypic plasticity and standing genetic variation interacted during contemporary ecotype formation in this case.
Resumo:
Aim To examine the association between the crack cocaine cessation and risky sexual behaviors. Design and setting Between June 2002 and March 2005, a sample of African-American residents of Houston, Texas who were using crack at the time of enrollment participated in a cohort study to evaluate per outreach interventions to reduce HIV risk behaviors. The sample for this study consisted of 351 women and men who completed structured surveys at baseline and at six months about socio-demographic characteristics, drug use, and sexual behaviors. Multivariate logistic regression was used to analyze the association between crack cessation and risky sexual behaviors at follow-up, while controlling for confounding characteristics. Measurements Crack cessation was defined as reporting no crack use in the 30 days prior to the follow-up interview. Possible associated factors included unprotected sex, having multiple sex partners, trading sex for money/drugs, crack use, and socio-demographic variables. Findings At the six-month follow-up interview, 21% of participants reported that they had not used crack in the previous 30 days. For women, crack cessation was significantly associated with having only one sex partner at follow-up; for men, crack cessation was significantly associated with being single, separated, or divorced at baseline, having only one sex partner at follow-up, and initiating protected sex by follow-up. Conclusion These findings support previous research indicating that crack use is associated with unprotected sex and multiple sexual partners, as men and women who ceased crack use were less likely to engage in these risky sexual behaviors. Findings demonstrate that treatment for crack use could have a meaningful effect on risky sexual behaviors and HIV/STI prevention.^
Resumo:
Live-imaging techniques (LIT) utilize target-specific fluorescent dyes to visualize biochemical processes using confocal and multiphoton scanning microscopy, which are increasingly employed as non-invasive approach to physiological in-vivo and ex-vivo studies. Here we report application of LIT to bivalve gills for ex-vivo analysis of gill physiology and mapping of reactive oxygen (ROS) and nitrogen (RNS) species formation in the living tissue. Our results indicate that H2O2, HOO. and ONOO- radicals (assessed through C-H2DFFDA staining) are mainly formed within the blood sinus of the filaments and are likely to be produced by hemocytes as defense against invading pathogens. The oxidative damage in these areas is controlled by enhanced CAT (catalase) activities recorded within the filaments. The outermost areas of the ciliated epithelial cells composing the filaments, concentrated the highest mitochondrial densities (MTK Deep Red 633 staining) and the most acidic pH values (as observed with ageladine-a). These mitochondria have low (depolarized) membrane potentials (D psi m) (JC-1 staining), suggesting that the high amounts of ATP required for ciliary beating may be in part produced by non-mitochondrial mechanisms, such as the enzymatic activity of an ATP-regenerating kinase. Nitric oxide (NO, DAF-2DA staining) produced in the region of the peripheral mitochondria may have an effect on mitochondrial electron transport and possibly cause the low membrane potential. High DAF-2DA staining was moreover observed in the muscle cells composing the wall of the blood vessels where NO may be involved in regulating blood vessel diameter. On the ventral bend of the gills, subepithelial mucus glands (SMG) contain large mucous vacuoles showing higher fluorescence intensities for O2.- (DHE staining) than the rest of the tissue. Given the antimicrobial properties of superoxide, release of O2.- into the mucus may help to avoid the development of microbial biofilms on the gill surface. However, cells of the ventral bends are paying a price for this antimicrobial protection, since they show significantly higher oxidative damage, according to the antioxidant enzyme activities and the carbonyl levels, than the rest of the gill tissue. This study provides the first evidence that one single epithelial cell may contain mitochondria with significantly different membrane potentials. Furthermore, we provide new insight into ROS and RNS formation in ex-vivo gill tissues which opens new perspectives for unraveling the different ecophysiological roles of ROS and RNS in multifunctional organs such as gills.
Resumo:
Chemical composition of the upper layer of sediments (0-1 cm) in the Kolvits and Knazhaya inlets, and also in the deep-water part of the Kandalaksha Bay is considered. It is shown that silts are richer in Fe, TOC, and heavy metals, than sands. The highest concentration of these elements is found in sediments under mixing zones of riverine and sea waters. Correlations of P, Zn, Cd, and Cu with iron are high, and correlations of Pb and Cu with organic carbon are also high. Very high concentration of Pb in the Kandalaksha Bay indicate technogenic pollution of sediments. Lignin makes significant contribution to formation of organic matter in the sediments. Composition of lignin in bottom sediments of the Kandalaksha Bay is defined by composition of lignin in soils and aerosols. Vanillin and syringyl structures prevail in molecular composition of lignin in bottom sediments. Their sources are coniferous vegetations, soils, and mosses. Ratios of certain types of phenol compounds indicate pollution of the upper layer of sediments by technogenic lignin. Lead and copper correlate well with this technogenic lignin.
Resumo:
Compared to mid-latitude deserts, the properties, formation and evolution of desert pavements and the underlying vesicular layer in Antarctica are poorly understood. This study examines the desert pavements and the vesicular layer from seven soil chronosequences in the Transantarctic Mountains that have developed on two contrasting parent materials: sandstone-dolerite and granite-gneiss. The pavement density commonly ranges from 63 to 92% with a median value of 80% and does not vary significantly with time of exposure or parent material composition. The dominant size range of clasts decreases with time of exposure, ranging from 16-64 mm on Holocene and late Quaternary surfaces to 8-16 mm on surfaces of middle Quaternary and older age. The proportion of clasts with ventifaction increases progressively through time from 20% on drifts of Holocene and late Quaternary age to 35% on Miocene-aged drifts. Desert varnish forms rapidly, especially on dolerite clasts, with nearly 100% cover on surfaces of early Quaternary and older age. Macropitting occurs only on clasts that have been exposed since the Miocene. A pavement development index, based on predominant clast-size class, pavement density, and the proportion of clasts with ventifaction, varnish, and pits, readily differentiated pavements according to relative age. From these findings we judge that desert pavements initially form from a surficial concentration of boulders during till deposition followed by a short period of deflation and a longer period of progressive chemical and physical weathering of surface clasts. The vesicular layer that underlies the desert pavement averages 4 cm in thickness and is enriched in silt, which is contributed primarily by weathering rather than eolian deposition. A comparison is made between desert pavement properties in mid-latitude deserts and Antarctic deserts.
Resumo:
Lupinus mariae-josephi is a recently described endemic Lupinus species from a small area in Eastern Spain where it thrives in soils with active lime and high pH. The L. mariae-josephi root symbionts were shown to be very slow-growing bacteria with different phenotypic and symbiotic characteristics from those of Bradyrhizobium strains nodulating other Lupinus. Their phylogenetic status was examined by multilocus sequence analyses of four housekeeping genes (16S rRNA, glnII, recA, and atpD) and showed the existence of a distinct evolutionary lineage for L. mariae-josephi that also included Bradyrhizobium jicamae. Within this lineage, the tested isolates clustered in three different sub-groups that might correspond to novel sister Bradyrhizobium species. These core gene analyses consistently showed that all the endosymbiotic bacteria isolated from other Lupinus species of the Iberian Peninsula were related to strains of the B. canariense or B. japonicum lineages and were separate from the L. mariae-josephi isolates. Phylogenetic analysis based on nodC symbiotic gene sequences showed that L. mariae-josephi bacteria also constituted a new symbiotic lineage distant from those previously defined in the genus Bradyrhizobium. In contrast, the nodC genes of isolates from other Lupinus spp. from the Iberian Peninsula were again clearly related to the B. canariense and B. japonicum bv. genistearum lineages. Speciation of L. mariae-josephi bradyrhizobia may result from the colonization of a singular habitat by their unique legume host.
Resumo:
Lupinus mariae-josephi is a recently described species (Pascual, 2004) able to grow in soils with high pH and active lime content in the Valencia province (Spain). L. mariae-josephi endosymbionts are extremely slowgrowing bacteria with genetic and symbiotic characteristics that differentiate them from Bradyrhizobium strains nodulating Lupinus spp. native of the Iberian Peninsula and adapted to grow in acid soils. Cross-inoculation experiments revealed that all the endosymbiotic isolates from L. mariae-josephi tested are legume-host selective and are unable to nodulate species such as L. angustifolius, and L. luteus. In contrast, Bradyrhizobium strains from Lupinus spp. tested were able to nodulate L. mariae-josephi, although the nodules fixed nitrogen inefficiently. Phylogenetic analysis was performed with housekeeping genes (rrn, glnII, recA, atpD) and nodulation gene nodC. Housekeeping gene phylogeny revealed that L. mariae-josephi rhizobia form a strongly supported monophyletic group within Bradyrhizobium genus. This cluster also includes B. jicamae and certain strains of B. elkanii. Contrarily, isolates from other Lupinus spp. native of the Iberian Peninsula were grouped mainly within B. canariense and two B. japonicum lineages. Phylogenetic analysis of L. mariae-josephi isolates based on the nodC symbiotic gene defined a solid clade close to isolates from Algerian Retama spp. and to fast-growing rhizobia.
Resumo:
To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also investigated. Analysis of initial spatial IAA distribution in the cuttings revealed that approximately 40 and 10% of the total IAA pool was present in the leaves and the stem base as rooting zone, respectively. A negative correlation existed between leaf size and IAA concentration. After excision of cuttings, IAA showed an early increase in the stem base with two peaks at 2 and 24h post excision and, thereafter, a decline to low levels. This was mirrored by the expression pattern of the auxin-responsive GH3 gene. NPA treatment completely suppressed the 24-h peak of IAA and severely inhibited root formation. It also reduced activities of cell wall and vacuolar invertases in the early phase of AR formation and inhibited the rise of activities of glucose-6-phosphate dehydrogenase and phosphofructokinase during later stages. We propose a model in which spontaneous AR formation in Petunia cuttings is dependent on PAT and on the resulting 24-h peak of IAA in the rooting zone, where it induces early cellular events and also stimulates sink establishment. Subsequent root development stimulates glycolysis and the pentosephosphate pathway